• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ELIPSINIO TIPO B-ERDVIŲ BEVEIK KONTAKTINIAI METRINIAI HIPERPAVIRŠIAI / ALMOST CONTACT METRIC STRUCTURES IN HYPERSURFACES OF B-SPACES OF ELLIPTIC

Kravčenkaitė, Deimantė 03 September 2010 (has links)
Darbe nagrinėjamos elipsinio tipo II rūšies beveik kontaktinės metrinės struktūros matematinėje literatūroje yra mažai tyrinėtos. Jos egzistuoja beveik kompleksinių daugdarų, turinčių B-metriką, normalizuotuose hiperpaviršiuose. Tiriama dviparametrinė tokių struktūrų šeima elipsinio tipo B-erdvės hiperpaviršiuje. Ryšys tarp šeimos struktūrų savybių įrodytas lemose ir teoremoje 3. / An almost contact metric structure (φ, ξ, η, g) of the elliptic type and of the second kind is defined in (2n-1)-dimensional manifold M2n-1 by affinor , vector , covector and metric gij satisfying the conditions: , , , . Such a structure induces in normalized hypersurfaces M2n-1 of manifolds M2n equipped with almost complex structure F and B-metric G. If Riemannian connection is F-connection, manifold M2n is called the B-space of the elliptic type. In the article, 2-parametric set aG+bF, a, b=const, of metrics in M2n is viewed. The set defines in the hypersurface M2n-1 a set of almost contact metric structures of the elliptic type of the second kind. The main result of the article is proof of the theorem. If M2n is B-space of elliptic type, normality, integrability, contacty of one structure in the set of almost contact metric structures is equivalent to normality, integrability, contacty, respectively, of all structures.

Page generated in 0.0425 seconds