• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pushing the boundary of Semantic Image Segmentation

Jain, Shipra January 2020 (has links)
The state-of-the-art object detection and image classification methods can perform impressively on more than 9k classes. In contrast, the number of classes in semantic segmentation datasets are fairly limited. This is not surprising , when the restrictions caused by the lack of labeled data and high computation demand are considered. To efficiently perform pixel-wise classification for c number of classes, segmentation models use cross-entropy loss on c-channel output for each pixel. The computational demand for such prediction turns out to be a major bottleneck for higher number of classes. The major goal of this thesis is to reduce the number of channels of the output prediction, thus allowing to perform semantic segmentation with very high number of classes. The reduction of dimension has been approached using metric learning for the semantic feature space. The metric learning provides us the mapping from pixel to embedding with minimal, still sufficient, number of dimensions. Our proposed approximation of groundtruth class probability for cross entropy loss helps the model to place the embeddings of same class pixels closer, reducing inter-class variabilty of clusters and increasing intra-class variability. The model also learns a prototype embedding for each class. In loss function, these class embeddings behave as positive and negative samples for pixel embeddings (anchor). We show that given a limited computational memory and resources, our approach can be used for training a segmentation model for any number of classes. We perform all experiments on one GPU and show that our approach performs similar and in some cases slightly better than deeplabv3+ baseline model for Cityscapes and ADE20K dataset. We also perform experiments to understand trade-offs in terms of memory usage, inference time and performance metrics. Our work helps in alleviating the problem of computational complexity, thus paving the way for image segmentation task with very high number of semantic classes. / De ledande djupa inlärningsmetoderna inom objektdetektion och bildklassificering kan hantera väl över 9000 klasser. Inom semantisk segmentering är däremot antalet klasser begränsat för vanliga dataset. Detta är inte förvånande då det behövs mycket annoterad data och beräkningskraft. För att effektivt kunna göra en pixelvis klassificering av c klasser, använder segmenteringsmetoder den s.k. korsentropin över c sannolikhets värden för varje pixel för att träna det djupa nätverket. Beräkningskomplexiteten från detta steg är den huvudsakliga flaskhalsen för att kunna öka antalet klasser. Det huvudsakliga målet av detta examensarbete är att minska antalet kanaler i prediktionen av nätverket för att kunna prediktera semantisk segmentering även vid ett mycket högt antal klasser. För att åstadkomma detta används metric learning för att träna slutrepresentationen av nätet. Metric learning metoden låter oss träna en representation med ett minimalt, men fortfarande tillräckligt antal dimensioner. Vi föreslår en approximation av korsentropin under träning som låter modellen placera representationer från samma klass närmare varandra, vilket reducerar interklassvarians och öka intraklarrvarians. Modellen lär sig en prototyprepresentation för varje klass. För inkärningskostnadsfunktionen ses dessa prototyper som positiva och negativa representationer. Vi visar att vår metod kan användas för att träna en segmenteringsmodell för ett godtyckligt antal klasser givet begränsade minnes- och beräkningsresurser. Alla experiment genomförs på en GPU. Vår metod åstadkommer liknande eller något bättre segmenteringsprestanda än den ursprungliga deeplabv3+ modellen på Cityscapes och ADE20K dataseten. Vi genomför också experiment för att analysera avvägningen mellan minnesanvändning, beräkningstid och segmenteringsprestanda. Vår metod minskar problemet med beräkningskomplexitet, vilket banar väg för segmentering av bilder med ett stort antal semantiska klasser.

Page generated in 0.0951 seconds