• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving Behavior Trees that Use Reinforcement Learning with Control Barrier Functions : Modular, Learned, and Converging Control through Constraining a Learning Agent to Uphold Previously Achieved Sub Goals / Förbättra beteendeträd som använder förstärkningsinlärning med kontrollbarriärfunktioner : modulär, inlärd och konvergerande kontroll genom att tvinga en lärande agent att upprätthålla tidigare uppnådda delmål

Wagner, Jannik January 2023 (has links)
This thesis investigates combining learning action nodes in behavior trees with control barrier functions based on the extended active constraint conditions of the nodes and whether the approach improves the performance, in terms of training time and policy quality, compared to a purely learning-based approach. Behavior trees combine several behaviors, called action nodes, into one behavior by switching between them based on the current state. Those behaviors can be hand-coded or learned in so-called learning action nodes. In these nodes, the behavior is a reinforcement learning agent. Behavior trees can be constructed in a process called backward chaining. In order to ensure the success of a backward-chained behavior tree, each action node must uphold previously achieved subgoals. So-called extended active constraint conditions formalize this notion as conditions that must stay true for the action node to continue execution. In order to incentivize upholding extended active constraint conditions in learning action nodes, a negative reward can be given to the agent upon violating extended active constraint conditions. However, this approach does not guarantee not violating the extended active constraint conditions since it is purely learning-based. Control barrier functions can be used to restrict the actions available to an agent so that it stays within a safe subset of the state space. By defining the safe subset of the state space as the set in which the extended active constraint conditions are satisfied, control barrier functions can be employed to, ideally, guarantee that the extended active constraint conditions will not be violated. The results show that significantly less training is needed to get comparable, or slightly better, results, when compared to not using control barrier functions. Furthermore, extended active constraint conditions are considerably less frequently violated and the overall performance is slightly improved. / Denna avhandling undersöker kombinationen av inlärningsregulatornoder i beteendeträd med styrbarriärfunktioner baserade på utökade aktiva begränsningsvillkor för noderna, samt om detta tillvägagångssätt förbättrar prestandan avseende tränings- och policynkvalitet, jämfört med ett rent inlärningsbaserat tillvägagångssätt. Beteendeträd kombinerar flera regulatorer, kallade regulatornoder, till en enda regulator genom att växla mellan dem baserat på det aktuella tillståndet. Dessa regulatorer kan vara handkodade eller inlärda i så kallade inlärningsnoder. I dessa noder är regulatorn en förstärkningsinlärningsagent. Beteendeträd kan konstrueras genom en process som kallas bakåtkoppling. För att säkerställa framgången för ett bakåtkopplat beteendeträd måste varje regulatornod upprätthålla tidigare uppnådda delmål. Utökade aktiva begränsningsvillkor formaliserar denna uppfattning som villkor som inte får överträdas för att regulatornoden ska fortsätta exekvera. För att uppmuntra till att upprätthålla utökade aktiva begränsningsvillkor i inlärningsnoder kan en negativ belöning ges till agenten vid överträdelse av utökade aktiva begränsningsvillkor. Denna metod garanterar dock inte att utökade aktiva begränsningsvillkor inte kommer att överträdas, eftersom den är helt inlärningsbaserad. Kontrollbarriärfunktioner kan användas för att begränsa de åtgärder som är tillgängliga för en agent så att den förblir inom en säker delmängd av tillståndsrymden. Genom att definiera den säkra delmängden av tillståndsrymden som den uppsättning där de utökade aktiva begränsningsvillkoren uppfylls kan kontrollbarriärfunktioner användas för att, i bästa fall, garantera att de utökade aktiva begränsningsvillkoren inte kommer att överträdas. Resultaten visar att det krävs betydligt mindre träning för att få jämförbara, eller något bättre, resultat jämfört med att inte använda kontrollbarriärfunktioner. Dessutom överträds utökade aktiva begränsningsvillkor betydligt mer sällan och den övergripande prestandan är något förbättrad. I would like to thank Katrina Liang and Petter Ögren for translating the to Swedish. / Diese Arbeit untersucht die Kombination von Lernaktionsknoten in Verhaltensbäumen mit Kontrollbarrierefunktionen, die auf den erweiterten aktiven Einschränkungsbedingungen und Vorbedingungen der Knoten basieren, und ob dieser Ansatz die Leistung hinsichtlich Trainingszeit und Qualität der erlernten Strategie im Vergleich zu einem rein lernbasierten Ansatz verbessert. Verhaltensbäume kombinieren mehrere Regler, die als Aktionsknoten bezeichnet werden, zu einem zusammengesetzten Regler, indem sie abhängig vom aktuellem Zustand zwischen ihnen wechseln. Diese Regler können entweder manuell programmiert oder in sogenannten lernenden Aktionsknoten erlernt werden. In diesen Knoten ist der Regler ein Reinforcement Learning Agent. Verhaltensbäume können in einem Prozess namens Rückwärtsverkettung erstellt werden. Um den Erfolg eines rückwärtsverketteten Verhaltensbaums sicherzustellen, muss jeder Aktionsknoten zuvor erreichte Teilerfolge aufrechterhalten. Sogenannte erweiterte aktive Einschränkungsbedingungen formalisieren diesen Gedanken als Bedingungen, die nicht verletzt werden dürfen, damit der Aktionsknoten die Ausführung fortsetzen kann. Um einen Anreiz für die Aufrechterhaltung erweiterter aktiver Einschränkungsbedingungen in Lernaktionsknoten zu schaffen, kann dem Agenten bei Verstoß gegen erweiterte aktive Einschränkungsbedingungen eine negative Belohnung gewährt werden. Diese Herangehensweise garantiert jedoch nicht die Einhaltung der erweiterten aktiven Einschränkungsbedingungen, da sie rein lernbasiert ist. Kontrollbarrierefunktionen können verwendet werden, um die verfügbaren Aktionen eines Agenten zu beschränken, damit dieser in einer sicheren Teilmenge des Zustandsraums bleibt. Indem die sichere Teilmenge des Zustandsraums als die Menge definiert wird, in der die erweiterten aktiven Einschränkungsbedingungen erfüllt sind, können Kontrollbarrierefunktionen idealerweise verwendet werden, um sicherzustellen, dass die erweiterten aktiven Einschränkungsbedingungen nicht verletzt werden. Die Ergebnisse zeigen, dass im Vergleich zur Nichtverwendung von Kontrollbarrierefunktionen deutlich weniger Training erforderlich ist, um vergleichbare oder etwas bessere Ergebnisse zu erzielen. Darüber hinaus werden erweiterte aktive Einschränkungsbedingungen deutlich seltener verletzt und die Gesamtleistung wird leicht verbessert.

Page generated in 0.1124 seconds