• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Machine Learning and Computer Vision for PCB Verification

Yang, Chen January 2020 (has links)
Digitizing printed circuit boards (PCB) from images with computer science techniques is efficient in analyzing the PCB circuit. This automatic optic processing could help electronic engineers have a faster and more in-depth insight into complex multilayer PCB. This automatic optic processing could help electronic engineers have a faster and more in-depth insight of complex multi- layer PCB. In this thesis, multiple machine learning and computer vision methods for extracting PCB circuits are investigated, designed, and tested with real- world PCB data. PCB image dataset is collected by professional delayer engineers, that consist of every layer of PCB and Xray 3D models of the whole PCB. Region of interest (RoI) cropping and image alignment are applied firstly as in the pre- process stage. Detection and localization of electronic components are implemented with deep learning networks (Faster RCNN), unsupervised machine learning clustering (XOR-based K- means), and multiple template matching, their accuracy results are 71.2%, 82.3% and 96.5%, respectively. For the multilayer circuit extraction, the metallic print circuit is segmented in YCbCr color space, then the connection of every circuit net is obtained. / Digitalisering av tryckta kretskort (PCB) från bilder med datavetenskapstekniker är effektivt för att analysera PCB: s kretsar. Denna automatiska optiska bearbetning kan hjälpa elektroniska ingenjörer att få en snabbare och mer djupgående inblick i komplexa flerlagers PCB. I denna avhandling undersöks, designas och testas flera maskininlärnings- och datorvisionsmetoder för att extrahera PCB- kretsar med verkliga PCB- data. PCB- bilddataset samlas av professionella de-layer-ingenjörer, som består av varje lager av PCB och röntgen 3Dmodeller av hela PCB. Beskärning av region av intresse (RoI) och bildjustering tillämpas först som i förprocessstadiet. Upptäckt och lokalisering av elektroniska komponenter implementeras med djupinlärningsnätverk (Faster RCNN), utan tillsyn av maskininlärningskluster (XOR- based K- means) och flera mallmatchningar. För extraktion med flera lager kretsar är den metalliska utskriftskretsen segmenterad i YCbCr- färgutrymme, då erhålls anslutningen av varje kretsnät.

Page generated in 0.0883 seconds