• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 22
  • 14
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Aditivní výroba prostorových prutů z polymerních materiálů / Additive manufacturing of spatial trusses from polymeric materials

Křivohlavý, Petr January 2021 (has links)
This thesis is focused on creating polymer lattice struts without any necessary support in full length using robotic 3D printing. The aim of the thesis is to find suitable process parameters and printing strategies with respect to the accuracy of the polymer struts. A statistical model of effects of individual process parameters has been produced to achieve stated objectives. The model enables finding optimal process parameters. The printing strategies for thus established process parameters are tested to increase the accuracy of the finished print and the quality of the bonds between individual struts. The accuracy assessment is executed using optical 3D metrology. The maximum deviation from the nominal shape 0.54mm has been accomplished using discovered process parameters and printing strategies.
12

Virtuální zprovoznění robotického pracoviště pro manipulaci s výrobkem / Virtual commissioning of the robotic workplace for workpiece manipulation

Lorenc, Tomáš January 2021 (has links)
The diploma thesis deals with the issue of virtual commissioning of the workplace and the commissioning of communication channels needed for this purpose. The theoretical part describes the benefits of virtual commissioning, robot and PLC programming and effectors for robots. The practical part deals with the design of the final robot effector, virtual commissioning using the programs Process Simulate and TwinCAT 3, communication between programs and creation of programs for the workplace.
13

Metoda určování přesnosti obráběcích robotů / Method for evaluation accuracy of milling robots

Cabalka, Jan January 2015 (has links)
This thesis describes the design of methodology for measuring the accuracy of robot machining. It describes the theoretical properties and classification of commercially available methods for precision measurement. In the practical part, a test workpiece is manufactured and positions and toolpaths are measured by the Pontos system. The proposals are based on the MCAE Systems company's equipment.
14

Motion synthesis for high degree-of-freedom robots in complex and changing environments

Yang, Yiming January 2018 (has links)
The use of robotics has recently seen significant growth in various domains such as unmanned ground/underwater/aerial vehicles, smart manufacturing, and humanoid robots. However, one of the most important and essential capabilities required for long term autonomy, which is the ability to operate robustly and safely in real-world environments, in contrast to industrial and laboratory setup is largely missing. Designing robots that can operate reliably and efficiently in cluttered and changing environments is non-trivial, especially for high degree-of-freedom (DoF) systems, i.e. robots with multiple actuators. On one hand, the dexterity offered by the kinematic redundancy allows the robot to perform dexterous manipulation tasks in complex environments, whereas on the other hand, such complex system also makes controlling and planning very challenging. To address such two interrelated problems, we exploit robot motion synthesis from three perspectives that feed into each other: end-pose planning, motion planning and motion adaptation. We propose several novel ideas in each of the three phases, using which we can efficiently synthesise dexterous manipulation motion for fixed-base robotic arms, mobile manipulators, as well as humanoid robots in cluttered and potentially changing environments. Collision-free inverse kinematics (IK), or so-called end-pose planning, a key prerequisite for other modules such as motion planning, is an important and yet unsolved problem in robotics. Such information is often assumed given, or manually provided in practice, which significantly limiting high-level autonomy. In our research, by using novel data pre-processing and encoding techniques, we are able to efficiently search for collision-free end-poses in challenging scenarios in the presence of uneven terrains. After having found the end-poses, the motion planning module can proceed. Although motion planning has been claimed as well studied, we find that existing algorithms are still unreliable for robust and safe operations in real-world applications, especially when the environment is cluttered and changing. We propose a novel resolution complete motion planning algorithm, namely the Hierarchical Dynamic Roadmap, that is able to generate collision-free motion trajectories for redundant robotic arms in extremely complicated environments where other methods would fail. While planning for fixed-base robotic arms is relatively less challenging, we also investigate into efficient motion planning algorithms for high DoF (30 - 40) humanoid robots, where an extra balance constraint needs to be taken into account. The result shows that our method is able to efficiently generate collision-free whole-body trajectories for different humanoid robots in complex environments, where other methods would require a much longer planning time. Both end-pose and motion planning algorithms compute solutions in static environments, and assume the environments stay static during execution. While human and most animals are incredibly good at handling environmental changes, the state-of-the-art robotics technology is far from being able to achieve such an ability. To address this issue, we propose a novel state space representation, the Distance Mesh space, in which the robot is able to remap the pre-planned motion in real-time and adapt to environmental changes during execution. By utilizing the proposed end-pose planning, motion planning and motion adaptation techniques, we obtain a robotic framework that significantly improves the level of autonomy. The proposed methods have been validated on various state-of-the-art robot platforms, such as UR5 (6-DoF fixed-base robotic arm), KUKA LWR (7-DoF fixed-base robotic arm), Baxter (14-DoF fixed-base bi-manual manipulator), Husky with Dual UR5 (15-DoF mobile bi-manual manipulator), PR2 (20-DoF mobile bi-manual manipulator), NASA Valkyrie (38-DoF humanoid) and many others, showing that our methods are truly applicable to solve high dimensional motion planning for practical problems.
15

Automation of depowdering step in binder-jet additive manufacturing : Commissioning of KUKA robot

Kolluri, Sowjanya January 2017 (has links)
The aim of this thesis is to automate the depowdering step in binder-jet additive manufacturing using KUKA kr6 robot. The major tasks involved in this thesis work are commissioning of the KUKA kr6 robot, plan the actions required for automation process of binder jet considering the scaling factor of green bodies. For this purpose KUKA robot with a standard KUKA compact controller (KRC4) and KUKA system software 8.3 (KSS) has been used. In Peter Corke Matlab toolbox (Matlab toolbox), KUKA kr6 robot model has been simulated to understand forward kinematics problem which shows the study the motion of end effector of robot in space for picking process. These transformations between the Joint coordinate systems and Cartesian coordinate systems give the forward and inverse kinematics. Firstly, a KUKA kr6 robot has been programmed in a KUKA Robot Language (KRL) using an algebraic approach with geometric operator to automate the picking process of green bodies. These are fragile bodies thereby many number of tests have been conducted to improve the program. Also additional effort has been placed to test the customized gripper used for the layered pick and place of the components, customized vacuum cleaner for the vacuum cleaning in between the layers and to consider the scaling factor during the sintering step of the binder jet. Finally, KUKA kr6 robot model has been simulated in Matlab toolbox. The picking point in the space has been simulated to study the forward kinematics and to understand how the robot reaches a position and orientation in space. Cartesian trajectory has been simulated. Also, the Jacobian matrix, its rank and determinant are studied to understand the singularities in KUKA kr6 robot, basing on which the thesis work can be continued and enhanced further.
16

Realizace automatizovaného pracoviště výrobní linky / Realization of an automated production line workplace

Pecha, Václav January 2019 (has links)
The thesis deals with the automation of the production process of the workplace for forging of metal parts for a specific customer in a specific environment. In the introduction, there is an analysis of the industrial revolution. In the next part, the thesis is devoted to the virtual commissioning in Process Simulate. It then deals with the technical part of the design and detailed specifications of the individual components. Finally, the success of the project after the implementation is evaluated.
17

Robotické obrábění s využitím externího nástroje / Robotic machining with external tool

Ryvol, David January 2019 (has links)
The goal of this final thesis is to evaluate the performance of chosen CAM software in robotic deburring of cast parts while using external tool. For this purpose, an analysis of program’s functions was carried out and toolpath-making strategies were compared. The most appropriate strategy for mentioned technology was chosen based on this analysis. The generation of a toolpath was described on the example of real part from automotive industry. In order to simulate real machining process, a model of workspace was created, proper tool with spindle was selected and a method of clamping the workpiece was designed. A postprocessor was created, and so was the robot program, after successful simulation, as a foundation for possible practical test. PowerMill software proved to be not very suitable for this kind of machining application, mainly because of high amount of time consumed during the whole process. So the original idea of replacing classical on-line programming with this software is not advised.
18

Návrh robotické buňky pro obsluhu tryskače pro čištění odlitků / Design of a Robotic Cell for Operating a Jet Machine for Cleaning Castings

Vrána, Vojtěch January 2021 (has links)
The main goal of this master’s thesis is to create a design of robotic cell for operating of blasting machine. Operation of blasting machine consists of robotic manipulation of aluminium castings from input container to the blasting machine conveyor. After blasting operation aluminium castings are manipulated by robot from conveyor to output container. The part of the master's thesis is proposal of several variants of solution of design of robotic cell. Afterwards the best option is selected. The thesis also deals with design and selection of functional components in robotic cell. Functional verification of robotic cell is made in software Tecnomatix Process Simulate. Technical-economics evaluation is also part of this master’s thesis.
19

Návrh robotické buňky pro svařování s více roboty / Robotic cell design for coordinated robotic welding

Dvořák, Jaroslav January 2010 (has links)
The aim of this thesis is to design a robotic cell with two welding robots and rotary table in two designs and to compare different types of control. These designed alternatives evaluate possibly using of its parts. These designed variants compare physically and financially.
20

Systémy průmyslového vidění s roboty Kuka a jeho aplikace na synchronizaci pohybu robotu s pohybujícím se prvkem / Robot vision with industrial robots Kuka

Selingerová, Simona January 2010 (has links)
This diploma thesis deals with a practical application employing an industrial robot KUKA, a vision system – smart camera Siemens. The application is focused on synchronizing or robot movements with objects moving on a conveyor belt. The introductory and theoretical part of this thesis is concerned with various systems for machine vision currently available on the market. Practical part is then focused on the demonstration application: setting-up the robotic cell and description of all devices, robot and vision system programming.

Page generated in 0.0622 seconds