Spelling suggestions: "subject:"kvävecykeln"" "subject:"lånecykel""
1 |
A circular production of fish and vegetables in Guatemala : An in-depth analysis of the nitrogen cycle in the Maya Chay aquaponic systems / En cirkulär produktion av fisk och grönsaker i Guatemala : En fördjupad analys av kvävecykeln i Maya Chay akvaponiska systemBjörn, Erik January 2018 (has links)
This study was done with the aim of deepening the understanding of the Maya Chay aquaponic systems. To meet the aim, a literature study on aquaponics, with an emphasis on the nitrogen metabolism in such systems, was conducted. Furthermore, a deep investigation of the specific Maya Chay systems was made to understand how these systems might be different from the general aquaponic designs. Finally, two nitrogen balances were developed with the purpose of examining the dynamics of the nitrogen transformations in two Maya Chay aquaponic systems. The measurements for the nitrogen balances was made between Mars 2017 to July 2017, and the model for the nitrogen balances evaluated the amount of nitrogen as: i) nitrogen input to the system through the feed, ii) nitrogen assimilated by the fish and the plants, iii) nitrogen accumulated in the sludge, and iv) nitrogen lost to the atmosphere through denitrification and similar processes such as anammox. The resulting nitrogen balances showed some interesting differences in the dynamics of nitrogen distribution. In the smaller Maya Chay XS system in Antigua, only 36 % of the nitrogen input was assimilated by the fish (30 %) and the plants (6 %) and 64 % of the nitrogen input could be regarded as lost, either to the atmosphere (46 %) or in the sludge (18 %). The other nitrogen balance showed that the distribution of nitrogen in the Maya Chay S system in Chinautla is much more efficient in taking care of the nitrogen input. In this system 70 % was assimilated by the fish (33 %) and the vegetables (37 %) and the remaining 30 % was lost, either to the atmosphere (14 %) or in the sludge (16 %). The nitrogen balances also showed that both systems are almost equally efficient in terms of nitrogen assimilation by the fish, and that the big differences lie in the rate of nitrogen assimilation by the plants (6 % vs. 30 %) and in the nitrogen loss to the atmosphere (46 % vs. 14 %). A likely explanation for these differences is the difference in design of the vegetable beds, where the less efficient system in Antigua has a large surface area for the vegetable bed, but only a small portion of this could be utilized for vegetable growth. Furthermore, a consequence of the larger surface is a larger anoxic zone in the bottom of the vegetable bed, which promotes the growth of denitrifying and anammox bacteria. These kinds of bacteria convert the dissolved ammonia, nitrite and nitrate to gas forms of nitrogen, such as nitrogen gas and nitrous oxide and thus nitrogen is lost from the system to the atmosphere. Finally, this study also showed a great difference in the ratio of vegetable to fish production between the systems, where the ratio was 0.43 in Antigua and 2.7 in Chinautla. This ratio further indicates the difference in design between the systems, especially regarding the vegetable beds, has an impact on how well they perform, both in terms in economic and productivity terms, but also in terms of the release of greenhouse gases (nitrous oxide). It can therefore be concluded that the original design of the Maya Chay system (i.e. the Chinautla system) is the preferable one. Even though the accuracy of the measurements in the experiments could be improved for future studies, this study has demonstrated the value of making nitrogen balances for aquaponic systems. Nitrogen balances increase the knowledge of the performance of the system and they increase the understanding of the dynamics of nitrogen transformations that takes place in the system. This knowledge can then be utilized to adjust the design and/or verify if either the aquaculture or hydroponic system is properly designed. / Den här studien gjordes med syftet att fördjupa förståelsen kring Maya Chay akvaponiska system. För att uppnå syftet, utfördes en litteraturstudie som fokuserade på metabolismen av kväve i sådana system. Vidare undersöktes specifika Maya Chay system för att förstå hur dessa system skulle kunna skilja sig från den generella akvaponiska designen. Slutligen utvecklades två kvävebalanser i syfte att utforska dynamiken i de kväveomvandlingar som sker i två Maya Chay akvaponiska system. Mätningarna för kvävebalanserna gjordes i perioden mars 2017 till juli 2017, och modellen för kvävebalanserna utvärderade mängden kväve som: i) kväve som tillförts till systemet genom fodret, ii) kväve som assimilerats av fiskarna och växterna, iii) kväve som ackumulerats i slammet, och iv) kväve som gått förlorat till atmosfären genom denitrifikation och liknande processer så som anammox. Resultaten från kvävebalanserna visade intressanta skillnader kring dynamiken av kvävefördelningen. I det mindre Maya Chay XS systemet i Antigua, assimilerades endast 36 % av kvävet av fiskarna (30 %) och växterna (6 %) och 64 % av kvävet ansågs som förluster, antingen till atmosfären (46 %) eller genom slammet (18 %). Den andra kvävebalansen visade att fördelningen av kväve i Maya Chay S systemet i Chinautla är mycket mer effektivt gällande tillvaratagandet av tillfört kväve. I detta system assimilerades 70 % av fiskarna (33 %) och av växterna (37 %) och de resterande 30 % gick förlorat, antingen till atmosfären (14 %) eller i slammet (16 %). Kvävebalanserna visade även att bägge systemen är mer eller mindre likvärdiga gällande assimilering av kväve från fiskarna, och att den stora skillnaden mellan systemen ligger i hur mycket kväve som assimilerats av växterna (6 % vs. 37 %) samt hur mycket kväve som gått förlorat till atmosfären (46 % vs. 14 %). En sannolik förklaring till dessa skillnader är skillnaden i designen av växtbäddarna för två systemen, där det mindre effektiva systemet i Antigua har större area för växtbädden, men endast en mindre del av denna kunde nyttjas för odling av grönsaker. Som konsekvens av den större arean av växtbädden är en större volym syrefattigt vatten i botten av växtbädden, vilket verkar för tillväxt av denitrifierande och anammoxa bakterier. Dessa typer av bakterier omvandlar den upplösta ammoniaken, nitriten samt nitratet till kväveföreningar i gasform, till exempel kvävgas och lustgas och därav går kvävet förlorat till atmosfären. Slutligen visade den här studien stora skillnader i förhållandet mellan växt- och fisk-produktion mellan de två systemen, där förhållandet var 0.43 i Antigua och 2.7 i Chinautla. Skillnaden mellan de två olika förhållandena är ytterligare en indikation till att skillnaden i designen mellan systemen, speciellt med avseende på växtbäddarna, har en effekt på hur väl systemen presterar, både i termer som ekonomi och produktivitet, men också i termer som utsläpp av växthusgaser (lustgas). Därför kan slutsatsen dras att den ursprungliga designen av Maya Chay systemen (det vill säga systemet i Chinautla) är att föredra. Även om noggrannheten i mätningarna i detta experiment skulle kunna förbättras i framtida experiment, så visar denna studie värdet av att utföra kvävebalanser för akvaponiska system. Kvävebalanserna ökar kunskapen om hur väl systemen fungerar och dom ökar kunskapen kring dynamiken i kväveomvandlingarna som sker i systemen. Denna kunskap kan sedan utnyttjas för att justera designen av systemen och/eller verifiera om antingen vattenbruksdelen eller hydroponidelen i systemet är feldimensionerad.
|
Page generated in 0.0211 seconds