• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude du rôle tissu-spécifique des gènes Hoxa5 et Yy1 dans le développement du système respiratoire de la souris

Landry-Truchon, Kim 23 April 2018 (has links)
Les gènes Hox sont essentiels au développement des organismes, étant impliqués, entre autres, dans l'identité cellulaire le long de l'axe antéropostérieur de l'embryon, la spécification des squelettes axial et appendiculaire, la formation du système nerveux et l'organogenèse. Le gène Hoxa5 est indispensable au développement du système respiratoire, puisque les souris mutantes présentent un taux important de mortalité liée à une détresse respiratoire à la naissance. La détection de la protéine HOXA5 dans le mésenchyme du tractus respiratoire ainsi que dans les motoneurones de la région phrénique du système nerveux central nous a mené à étudier la contribution spécifique du gène Hoxa5 dans chaque composante susceptible d'influencer le développement pulmonaire. À l'aide d'une approche d'inactivation conditionnelle, nous avons démontré que la perte de fonction de Hoxa5 dans le mésenchyme affecte le développement trachéal, ainsi que la différenciation épithéliale et la croissance pulmonaire. Aussi, la mutation dans les motoneurones résulte en une hypoplasie pulmonaire ainsi qu'en une innervation et une musculature anormales du diaphragme, des défauts permettant de reproduire la mortalité néonatale obsevée chez les souris Hoxa5-/-. L'expression du gène Hoxa5 est contrôlée par plusieurs séquences régulatrices, dont un responsable l'expression dans les systèmes respiratoire et digestif. Le facteur de transcription Yin Yang 1 (YY1) lie cette séquence et il est impliqué directement dans la régulation de l'expression du gène Hoxa5 dans le poumon. YY1 est exprimé de manière ubiquitaire et peut agir en tant qu'activateur ou répresseur transcriptionnel dépendamment du contexte en recrutant différents coactivateurs ou corépresseurs transcriptionnels. La perte d'expression mésenchymale de Yy1 mène à un phénotype pulmonaire similaire à celui des souris Hoxa5-/- causant la mort à la naissance. Nous avons étudié comment l'inactivation spécifique de Yy1 dans l'épithélium pulmonaire, à l'aide de l'approche d'inactivation conditionnelle, influence le développement pulmonaire. La mutation épithéliale de Yy1 résulte en une mortalité à la naissance causée par une détresse respiratoire, des anneaux de cartilage désorganisés, une différenciation altérée ainsi qu'une absence de formation de l'arbre bronchial menant à une dilatation des voies respiratoires similaire à ce qui est observé chez les patients souffrant de malformations congénitales cystiques du poumon, telle que le blastome pleuropulmonaire (PPB). Nos résultats démontrent le rôle crucial de YY1 dans la morphogenèse pulmonaire et identifie les souris mutantes pour le gène Yy1 comme un modèle potentiel permettant d'étudier les méchanismes génétiques du PPB. / Hox genes encode transcription factors governing complex developmental processes including the anteroposterior patterning of the embryo axis, the specification of the axial and appendicular skeletons as well as the formation of the nervous system and several organs. In the respiratory system, the role of Hoxa5 is critical since the loss of Hoxa5 function causes death at birth of a high proportion of mutant pups due to respiratory distress. HOXA5 protein expression in the mesenchyme of the respiratory tract and in the phrenic motor neurons of the central nervous system led us to address the specific contribution of Hoxa5 in each component to lung development. Using a conditional gene targeting approach, we demonstrated that the genetic ablation of Hoxa5 function in the mesenchyme established the importance of Hoxa5 in trachea development, lung epithelial cell differentiation and lung growth. In parallel, the specific deletion of Hoxa5 in motor neurons resulted in abnormal innervation of the diaphragm, altered diaphragm musculature and lung hypoplasia which are responsible for the neonatal lethality observed in null mutants. Thus, this confirms that a defective diaphragm mainly contributes to impair survival at birth. Hoxa5 expression is under the control of many regulatory elements, one of which is responsible for Hoxa5 expression in the respiratory and digestive tracts. Yin Yang 1 (YY1) is a multifunctional zinc-finger-containing transcription factor that plays crucial roles in numerous biological processes by selectively activating or repressing transcription, depending upon promoter contextual differences and specific protein interactions. We have shown that YY1 regulates Hoxa5 expression in the lung by binding to the lung-specific regulating sequence. However, the mesenchymal loss of Yy1 function causes a lung phenotype similar to the one observed in Hoxa5-/- mutants including neonatal mortality. We then studied how the epithelial-specific inactivation of Yy1 impacts on lung development. The Yy1 epithelial mutation resulted in neonatal death due to respiratory failure. It impaired tracheal cartilage formation, altered cell differentiation, abrogated lung branching and caused airway dilation similar to that seen in human congenital cystic lung diseases, such as the pleuropulmonary blastoma (PPB). Together, our data demonstrate the crucial requirement for YY1 in lung morphogenesis and identify Yy1 mutant mice as a potential model for studying the genetic basis of PPB.
2

Neurotransmission par l'acétylcholine et l'adénosine tri-phosphate dans le contrôle périphérique de la respiration chez le rat en développement : rôle des récepteurs nicotiniques et P2X

Niane, Lalah Malika 19 April 2018 (has links)
Le corps carotidien est le principal senseur périphérique de l'oxygène impliqué dans le contrôle de la ventilation en condition de base et en réponse à l'hypoxie. Cette sensibilité se développe avec l'âge postnatal. Une activité inadéquate du corps carotidien en période néonatale peut prédisposer le nouveau-né prématuré à des instabilités respiratoires. La cotransmission par l'acétylcholine (récepteurs nicotiniques) et l'adénosine tri-phosphate (récepteurs purinergiques P2X) joue un rôle prépondérant dans le fonctionnement du corps carotidien chez le mammifère adulte, mais demeure très peu caractérisé chez le sujet en développement. L'objectif général de cet ouvrage est de déterminer, à l'aide de différentes approches méthodologiques, le rôle de l'acétylcholine et de l'adénosine tri-phosphate dans la ventilation, l'activité du corps carotidien et le maintien d'un patron stable de la rythmicité respiratoire chez le rat à différents âges de développement. La première étude de cet ouvrage montre que le blocage des récepteurs nicotiniques atténue la réponse ventilatoire à l'hypoxie de manière âge dépendante à l'intérieur de la gamme d'âges étudiés. Ces changements sont en partie liés à l'activation des récepteurs nicotiniques de type α7 localisés au niveau des corps carotidiens. La deuxième étude révèle que le blocage des récepteurs purinergiques de type P2X réduit l'activité ventilatoire et l'activité des corps carotidiens en condition de base et en réponse à l'hypoxie. Ces effets impliquent en partie les récepteurs exprimant la sous-unité P2X3. Contrairement aux récepteurs nicotiniques, dans la gamme d'âges que nous avons testés, la contribution des récepteurs P2X sur l'activité ventilatoire ainsi que sur l'activité des corps carotidiens demeure stable avec l'âge postnatal. Enfin, l'étude du blocage combiné des récepteurs nicotiniques et P2X chez le rat nouveau-né démontre une importante interaction sur l'homéostasie ventilatoire en condition de base, très prononcée lors des premiers jours de vie. Cette étude montre également une augmentation de la fréquence des apnées et du coefficient de variation de la ventilation minute suite au double blocage des récepteurs nicotiniques et purinergiques P2X. Ces instabilités respiratoires sont très accentuées chez le jeune rat de 4 jours de vie comparé à celui plus mature de 12 jours de vie. L'ensemble des études présentées dans cet ouvrage montre que la transmission cholinergique (nicotinique) et purinergique (adenosine tri-phosphate) joue un rôle déterminant dans la régulation de la respiration et le maintien d'un patron stable de l'activité respiratoire chez le rat en développement.

Page generated in 0.0972 seconds