• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Isolated or Coupled Oxidative, Moisture, and Freeze-Thaw Effects on Warm Mix Asphalt

Pittman, Carl 10 August 2018 (has links)
This thesis aims to contribute to the growing body of warm mix asphalt (WMA) research by evaluating the differences in behavioral properties of three WMA mixtures, representing the three warm mix technology (WMT) categories (foaming, chemical additives, and organic waxes), relative to a control hot mix asphalt (HMA) in a specific set of conditions which is not well documented in literature. These conditions are: plant produced mixtures with all virgin aggregates and binder (i.e. no recycled materials) and no additives other than the warm mix technology. These mixtures were evaluated at low, intermediate, and high testing temperatures before and after a set of conditioning protocols (CPs), which utilized varying levels of isolated and combined oxidative, moisture, and freeze-thaw damage. A key feature of this thesis is that damage induced by these CPs has been benchmarked relative to measured field aging effects through studies which evaluated the three WMA mixtures and one HMA mixture used to obtain the results presented here, along with additional mixtures not considered in this thesis.
2

Capturing Individual or Combined Environmental Effects from Longer Term Field Aging of Asphalt Mixtures

Bazuhair, Rabeea Waheed 03 May 2019 (has links)
Nowadays, asphalt mixtures can be complex and have many ingredients to meet economic, performance, and/or environmental requirements. Economic and environmental factors have been driving performance in the positive direction for rutting, but the negative direction for brittleness, cracking, and overall durability. Recent research has also shown that two of the national standards to assess aging or effects of environmental factors (AASHTO T283 and R30) do not always simulate the amount of aging or behaviors mentioned in the documents. Also, these methods generally view one environmental effect at a time, and do not consider simultaneous environmental effects on aging (e.g. oxidation, moisture, freeze-thaw effects). However, pavements are exposed to combined environmental effects. As such, there is a lack of understanding of the combined environmental effects on asphalt pavement, and improve methods are needed for laboratory settings, resulting in less than optimal design and materials selection protocols. This dissertation focuses on investigating combined environmental effects of oxidation, moisture, and freeze-thaw. The dissertation includes four years of field aging of plant mixed asphalt mixtures containing no recycled materials and three different warm mix technologies that were also exposed to eight laboratory conditioning protocols including individual and combined environmental effects of oxidation, moisture and freeze-thaw to investigate mixture properties measured at high, intermediate, and low temperatures with several mixture tests that were complimented with tests on recovered binder. Major findings are summarized below: • Cantabro mass loss captured individual and combined effects damage in laboratory and field conditions better than other mixture testing utilized herein and was recommended for mixture assessment. • Laboratory conditioning protocols with combined effects were the only ones able to consistently represent four or more years of field aging in the Mississippi climate. • Field aging of laboratory compacted specimens in PVC sleeves did not fully represent field aging of field placed pavement. Temperature and moisture conditions varied between the two cases. • Use of Cantabro mass loss and laboratory conditioning consisting of hot air, hot water, and freeze-thaw conditions was shown to provide combined effects improvements relative to at least some typical practices. Guidance was provided on how to use these tools to assess combined effects.

Page generated in 0.1397 seconds