• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterisation of the B-Lactamase Gene From Campylobacter Jejuni

Alfredson, David, n/a January 2005 (has links)
Thermophilic Campylobacter species such as Campylobacter jejuni and Campylobacter coli are recognised worldwide as major causes of acute gastroenteritis in humans. Campylobacteriosis is frequently a mild to moderate self-limited illness and most cases do not require antimicrobial therapy; antimicrobial therapy is necessary for patients with systemic Campylobacter infections, for patients with severe disease, or for immunosuppressed patients. Antimicrobial susceptibility testing of Campylobacter species using disk diffusion currently is not standardised by the National Committee for Clinical Laboratory Standards (NCCLS), however, in order to monitor the prevalence of antimicrobial resistance in Campylobacter species, there is a need for standardised or calibrated methods of susceptibility testing. Initially, 90 human clinical isolates of thermophilic Campylobacter species from Southeast Queensland, Australia, were screened for resistance to ampicillin, erythromycin and tetracycline using the disk diffusion susceptibility testing method. Levels of resistance were then determined using E test MIC and agar dilution methods to determine the reliability of disk diffusion results. Results of the disk diffusion testing showed 87 (97%) isolates resistant to ampicillin, 14 (16%) isolates were resistant to tetracycline and three (3.4%) isolates were resistant to erythromycin. Results of disk diffusion testing showed 100% correlation (+1 log2 dilution) with agar dilution for erythromycin and tetracycline, and 77% for ampicillin. E test showed 68% correlation with agar dilution for ampicillin, 100% for erythromycin and 64% for tetracycline. These data suggest that disk diffusion susceptibility testing may be used to screen thermophilic Campylobacter spp. for putative resistance to erythromycin and tetracycline and that the incidence of resistance of Campylobacter spp. to erythromycin and tetracycline is low in Southeast Queensland, Australia. Agar dilution remains the most accurate method for determination of ampicillin susceptibility. Numerical analyses of restriction endonuclease (RE) fragment profiles were performed to elucidate relatedness of the antibiotic resistant isolates and the results suggested a high level of isolate variation. The role of the B-lactamase in the resistance of C. jejuni to various B-lactams has been well documented and B-lactamase production in C. jejuni has been reported in 83-93% of strains. The expression and characterisation of the Campylobacter B-lactamase, however, has not been described. In this work, standard cloning techniques utilising a high-copy number E. coli cloning vector and a previously described E. coli-Campylobacter shuttle cloning vector were unsuccessful in isolation and expression of the C. jejuni B-lactamase gene in E. coli, possibly due to a lack of expression of the campylobacter gene in its host or low efficiency of transformation. Therefore, in order to facilitate the isolation, expression and characterisation of the C. jejuni B-lactamase gene, it was necessary to construct a new E.coli-Campylobacter shuttle cloning vector for the purposes of expressing the C. jejuni B-lactamase in Campylobacter. To aid in the construction of the vector, the sequence and genetic organisation of a 4.0-kb cryptic plasmid, termed pCJ419, identified in a human clinical isolate of C. jejuni was determined. Plasmid pCJ419 is a circular molecule of 4013 bp and contains four open reading frames (ORFs), the products of which share significant sequence similarity with putative proteins from known C. jejuni and C. coli plasmids. ORF-1 encodes a putative mobilisation protein (Mob); ORF-2 and ORF-3 encode proteins which have high identity to putative RepA and RepB proteins, respectively, of known C. jejuni and C. coli plasmids. ORF-4 encodes a protein which has high identity to a hypothetical protein of unknown function, Cjp32, previously described in a pVir plasmid of C. jejuni. Tandem repeating sequences typical of a plasmid replication origin (ori) were identified upstream of the DNA sequences encoding putative replication initiation proteins RepA and RepB. An E. coli-Campylobacter shuttle cloning vector, pGU0202, was constructed using plasmid pMW2 which harbours a Campylobacter-derived kanamycin-resistance gene, aphA(3’)-III. The sequences encoding pCJ419 mob, repA and repB were inserted upstream of aphA(3’)-III resulting in a stable construct of 6174 bp that was used successfully to transform both E. coli and Campylobacter. Subsequently, a novel molecular class D ?-lactamase gene, blaOXA-61, from a B-lactamase-positive, ampicillin-resistant (MIC 64 mg l-1), clinical strain of Campylobacter jejuni, strain GC015 was isolated, cloned and characterized using the newly constructed shuttle vector pGU0202. An open reading frame of 774 bp was identified on a ClaI genomic fragment of 2.2 kb and encodes a protein of 257 amino acids. Conserved motifs composed of identical amino acids typical of penicillin-recognising proteins and specific class D motifs were identified. blaOXA-61 was cloned into the shuttle cloning vector pGU0202 and expressed in B-lactamase-negative, ampicillin-susceptible C. jejuni and E. coli. A conserved 122-bp sequence directly upstream of blaOXA-61 was identified and shown to be required in cis for high-level resistance of Campylobacter to the penicillins although blaOXA-61 expressed only at low levels in E.coli. Southern hybridisation analysis demonstrated that the bla gene was chromosomally encoded and present on the same BglII and ClaI-digested genomic DNA fragments from various strains of Campylobacter with ampicillin MICs of between 4 and 64 mg l-1. In addition, DNA fragments encoding two putative zinc-dependent hydrolases from the metallo-B-lactamase superfamily, designated GLX2-1 and GLX2-2, were identified in a clinical isolate of Campylobacter jejuni, strain 012, cloned and sequenced. A strictly conserved motif, -H-X-H-X-D-, characteristic of the metallo- B-lactamase superfamily of proteins, including the class B metallo- B-lactamases, was identified in both proteins although functional B-lactamase could not be expressed in either E. coli or C. coli transformed using the C. jejuni hydrolase-containing shuttle vector pGU0202. Further work is warranted to determine the exact function of these proteins.

Page generated in 0.0388 seconds