• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Isolierung und Charakterisierung eines Hemmstoffes der Na+/K+-ATPase aus Penicillium lagena und Optimierung der Wachstumsbedingungen bezüglich der Bildung von Hemmstoffen der Na+/K+-ATPase in verschiedenen Mikroorganismen /

Frerichs, Edda. January 1996 (has links) (PDF)
Univ., Diss.--Halle, 1996.
2

The Time-Course of the Effects of Growth Hormone During Zebrafish (<i>DANIO RERIO</i>) Auditory Hair Cell Regeneration

Wang, Yajie 01 May 2012 (has links)
Growth hormone (GH) was upregulated in the zebrafish inner ear following sound exposure in a previous study. To identify the specific role of GH in hair cell regeneration and the possible cellular mechanisms of this regeneration, groups of zebrafish were divided into baseline (no sound exposure, no injection), buffer-injected and GH-injected groups. Buffer- and GH-injected fish were exposed to a 150 Hz tone at a source level of 179 dB re 1 μPa root mean squared (RMS) for 36 h. Phalloidin-staining was used to assess the effects of GH on hair cell bundle density; BrdU-labeling was used to assess the effects of GH on cellular proliferation; TUNEL-labeling was used to assess the effects of GH on apoptosis in the zebrafish inner ear following acoustic trauma. The time-course of hair cell bundle density, cell proliferation, and apoptosis was established by combining data for baseline fishes and sound-exposed fishes at post-sound exposure day 1 (psed1), psed2, and psed3. GH-injected fish exhibited greater densities of hair cells than bufferinjected controls. In addition, GH-injected fish had higher levels of cell proliferation and lower levels of apoptosis than buffer-injected controls. This suggests that GH may play an important role in zebrafish inner ear hair cell regeneration by stimulating cellular proliferation and inhibiting cellular apoptosis.

Page generated in 0.0281 seconds