• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo da Deformação Plástica Severa por Junção por Laminação Assimétrica Acumulada (JLAA) do Alumínio AA1050 / Study of the Accumulative Asymmetric Roll Bonding (AARB) applied on the AA1050 Aluminum

Godoi, Renan Pereira de 05 April 2018 (has links)
Submitted by Renan Godoi (renanpereiragodoi@gmail.com) on 2018-06-01T20:10:52Z No. of bitstreams: 1 Dissertação Final_Renan Pereira de Godoi.pdf: 7902074 bytes, checksum: ff03d950cd27ddb8fdc9283812efefa2 (MD5) / Rejected by Milena Rubi ( ri.bso@ufscar.br), reason: Bom dia! Além da dissertação, você deve submeter também a carta comprovante devidamente preenchida e assinada pelo orientador. O modelo da carta encontra-se na página inicial do site do Repositório Institucional e ela deve ser postada na mesma tela da submissão da dissertação. Att., Milena P. Rubi Bibliotecária CRB8-6635 Biblioteca Campus Sorocaba on 2018-06-04T12:59:15Z (GMT) / Submitted by Renan Godoi (renanpereiragodoi@gmail.com) on 2018-06-04T14:23:03Z No. of bitstreams: 2 Dissertação Final_Renan Pereira de Godoi.pdf: 7902074 bytes, checksum: ff03d950cd27ddb8fdc9283812efefa2 (MD5) Carta comprovante entrega dissertacao final.pdf: 51608 bytes, checksum: 02a387db1a1cf80b4fd6208badba41e4 (MD5) / Approved for entry into archive by Milena Rubi ( ri.bso@ufscar.br) on 2018-06-06T17:33:17Z (GMT) No. of bitstreams: 2 Dissertação Final_Renan Pereira de Godoi.pdf: 7902074 bytes, checksum: ff03d950cd27ddb8fdc9283812efefa2 (MD5) Carta comprovante entrega dissertacao final.pdf: 51608 bytes, checksum: 02a387db1a1cf80b4fd6208badba41e4 (MD5) / Approved for entry into archive by Milena Rubi ( ri.bso@ufscar.br) on 2018-06-06T17:33:45Z (GMT) No. of bitstreams: 2 Dissertação Final_Renan Pereira de Godoi.pdf: 7902074 bytes, checksum: ff03d950cd27ddb8fdc9283812efefa2 (MD5) Carta comprovante entrega dissertacao final.pdf: 51608 bytes, checksum: 02a387db1a1cf80b4fd6208badba41e4 (MD5) / Made available in DSpace on 2018-06-06T17:34:08Z (GMT). No. of bitstreams: 2 Dissertação Final_Renan Pereira de Godoi.pdf: 7902074 bytes, checksum: ff03d950cd27ddb8fdc9283812efefa2 (MD5) Carta comprovante entrega dissertacao final.pdf: 51608 bytes, checksum: 02a387db1a1cf80b4fd6208badba41e4 (MD5) Previous issue date: 2018-04-05 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Aluminum alloys are widely used in the automotive and aerospace industries due to some characteristics such as low density and high corrosion resistance, but their low tensile strength restricts a number of applications. The grain size is considered as a key factor that affects the mechanical behavior of metallic materials and the well-known Hall-Petch equation shows an improvement of strength through reduction in the average grain size. The process of severe plastic deformation (SPD) stands out precisely in the grain refinement, making it possible to obtain ultrafine grains, with average diameter between 100 to 1000nm. Among the SPD processes, the accumulative roll bonding (ARB) has an advantage over the others in aspects like productivity and volume of produced material. The use of ARB to improve the mechanical properties of aluminum alloys has been extensively studied, but some usual problems from conventional rolling persist, like the highly oriented texture that is inappropriate to conformability. The asymmetric rolling (AR) is able to solve this inconvenient texture, but it does not achieve the degree of strain needed to obtain a homogeneous fine-grained structure. In order to solve these problems, the accumulative asymmetric roll bonding (AARB) was proposed. This process aims to combine the good grain refinement achieved in the ARB with the modification on texture yielded by AR. In this work, AA1050 aluminum samples were submitted to 4, 6 and 10 AARB cycles at 350 and 400oC, that is in the range of hot thermomechanical processing. The samples were mechanically characterized by Vickers microhardness and tensile tests. The microstructures of the samples were characterized by optical microscopy, scanning electron microscopy (EBSD and failure analysis), and x-ray diffraction. The results of the characterizations showed a good quality of junction for all samples analyzed. The highest tensile strength values were obtained for the sample submitted to 6 cycles at 350 ° C. The improvement in strength was attributed to the grain refinement driven by dynamic recrystallization, yielding ultrafine grains in the range of 600 to 1000nm. The texture intensity was reduced and changed to shear components, at the same time the same yield and elongation was achieved in the rolling and the transverse directions, which indicates an improvement in the formability properties of the material. / As ligas de alumínio são amplamente utilizadas nas indústrias automobilística e aeroespacial, devido a sua baixa densidade e alta resistência à corrosão, mas sua baixa resistência mecânica limita a quantidade de aplicações. O tamanho de grão é considerado como um fator chave que afeta o comportamento mecânico dos materiais metálicos, e a conhecida relação de Hall Petch mostra um aumento da resistência dos metais, com a diminuição de sua granulometria média. Os processos de deformação plástica severa (DPS) se destacam justamente no refino do grão, possibilitando a obtenção de materiais com granulometria ultrafina, compreendida entre 100 a 1000nm. Dentre os processos DPS a junção por laminação acumulada (JLA) exibe certa vantagem sobre os demais nos quesitos de produtividade e quantidade de material produzido. Na literatura são encontrados trabalhos que utilizam a JLA para aumento da resistência mecânica das ligas de alumínio, porém alguns problemas recorrentes da laminação convencional persistem, como a obtenção de materiais com textura desfavorável para processos de conformação plástica. O processo de laminação assimétrica (LA) é capaz de resolver o problema da textura, porém não atinge graus de deformação que levem à uma estrutura de grãos finos homogênea. Tendo em vista a solução desses problemas, foi proposto o processo de junção por laminação assimétrica acumulada (JLAA), que visa combinar as boas propriedades atingidas no processo JLA, com componentes de textura favoráveis que são obtidos na LA. Nesse trabalho, amostras de alumínio AA1050 foram submetidas a 4, 6 e 10 ciclos JLAA a 350 e 400oC, ou seja, dentro da faixa de temperaturas de trabalho termomecânico a quente. As amostras foram caracterizadas mecanicamente através de ensaios de microdureza Vickers e ensaio de tração. A microestrutura das amostras foi caracterizada por microscopia óptica, microscopia eletrônica de varredura (EBSD e análise de falha), e difração de raio-X. Os resultados das caracterizações mostram uma boa qualidade de junção para todas amostras analisadas. Quanto às propriedades mecânicas, os maiores valores de resistência foram obtidos para a amostra submetida a 6 ciclos a uma temperatura de 350°C. A melhoria nas propriedades mecânicas foi atribuída ao refino de grão que ocorreu por recristalização dinâmica, alcançando valores dentro da faixa de 600 a 1000nm. Foi detectada também uma diminuição nas componentes de textura típicas para a laminação convencional e introdução de texturas de cisalhamento tanto na superfície quanto no centro das amostras, acompanhada de valores homogêneos de limite de resistência e alongamento nas direções de laminação e transversal à laminação, o que indica uma melhora nas propriedades de conformabilidade do material.
2

Estudo da influência da deformação por cisalhamento extrusão em canal angular e laminação assimétrica nas propriedades mecânicas do alumínio AA 1050 / The influence of analysis of deformation by shear-equal channel angular extrusion and asimetric rolling on the mechanical properties of an aluminium AA1050

Vega, Marcelo Clécio Vargas 18 August 2014 (has links)
Made available in DSpace on 2016-06-02T19:19:59Z (GMT). No. of bitstreams: 1 VEGA_Marcelo_2014.pdf: 9141409 bytes, checksum: fd60293925ed2e6a9d8df71ece7c06f5 (MD5) Previous issue date: 2014-08-18 / Financiadora de Estudos e Projetos / It is known that the formability of aluminum alloy AA1050 is not favored when sheets are produced by conventional rolling due to the appearance of intense cube texture {100} <100> after recrystallization heat treatment. The objective of this study was to investigate whether components of shear processes can improve this property. For this work two processes of plastic deformation introducing shear stresses were selected: Equal channel angular extrusion (ECAE) and asymmetric rolling; these processes were compared to conventional rolling. In conventional rolling deformation results mainly compressive stresses. In the ECAE process shear is induced in the intersection of two channels of the same geometry that intersect by an angle &#61542; In the asymmetric rolling the shear stress is basically increased due to the speed variation between the rolls. An AA1050 aluminum sheet produced by the twin roll casting process was used in this study. The deformations were performed basically in 4 paths: i) conventional rolling, 70% reduction, ii) ECAE 1-8 passes, iii) ECAE 1-4 passes followed by conventional rolling with reduction of 70% and iv) Asymetric Rolling with reductions 30-50%. The mechanical and microstructural characterization of the deformed state was performed and the formability after annealing heat treatment was studied. ECAE deformation reduced the grain size, which measured by EBSD and transmission electron microscopy yield 1 micrometer. The evolution of equivalent strain compared with the increase of the hardness indicated a grain size stabilization of the grain/cell after four ECAE extrusion passes. After 8 passes the fraction of high angle boundaries exceeded the low-angle boundaries, ie dynamic recrystallization occurred during deformation. The texture after one pass ECAE approached the ideal texture for a 120 ° ECAE die. For deformations with 4 - 8 ECAE passes, the texture evolved into scattering the orientations having the {111} plane parallel to the surface (&#61543; fiber), and into the formation of rotated cube {100} <110> and rotated Goss {110} <110> orientations. The conventional rolling after ECAE returned the orientations to typical rolling textures: brass, copper and Goss. Deformation by asymmetric rolling with a difference of tangential velocity of 1.2 imposed shear stress, but it was necessary to decrease the reduction rate from 10% to 5% per pass in order to appreciably modify the texture. Comparing the formability of the deformed material, it was observed that ECAE increased the penetration depth in the Erichsen test, while rolling decreased the Erichsen index. Asymmetric rolling reduced the intensity of texture and destroyed the symmetry of the crystallographic orientations. The asymmetric rolled sample presented better formability than the rolled samples. After annealing, the samples of conventional rolling, with or without ECAE pre - strain, showed typical textures of annealed laminated material with high cube texture type. The &#61543; fiber was not stable in the ECAE annealed samples. Although the overall texture intensity remained low, increasing ECAE deformation before heat treatment strengthened the Goss {110} <001> orientation. For the asymmetric rolling the fiber orientations <100>// ND was scattered and both rotated cube and cube orientations were present. The lowest index of planar anisotropy was obtained in the sample annealed after four ECAE passes, representing a lower tendency to fail, This sample also presented an index of penetration in Erichsen testing of the same order of conventionally rolled sheets. It has been shown that both ECA as the asymmetric rolling deformation can significantly modify the texture of deformation and annealing, and improve the characteristics of formability of aluminum alloy 1050. This processing step should be located at the end of mechanical forming process before final annealing. / Sabe-se que a estampabilidade em ligas de alumínio AA1050 não é favorecida quando as chapas são produzidas por laminação convencional devido ao surgimento de uma textura do tipo cubo {100}<100> de forte intensidade após tratamentos térmicos de recristalização. O objetivo do trabalho foi investigar se processos com componentes de cisalhamento podem melhorar esta propriedade. Para este trabalho foram selecionados dois processos de deformação plástica que introduzem tensões de cisalhamento: Extrusão em canal angular (ECA) e Laminação assimétrica (LA); esses processos foram comparados à laminação convencional. Na laminação convencional a deformação resulta principalmente de esforços de compressão. No processo ECA o cisalhamento é imposto na intersecção de dois canais de mesma geometria que se interceptam formado um ângulo &#61542;. Na laminação assimétrica o esforço de cisalhamento é introduzido devido à variação de velocidade entre os cilindros de laminação. Partiu-se de chapas de alumínio AA1050 produzidas pelo processo Caster. As deformações foram executadas basicamente em 4 esquemas: i) Laminação convencional com 70% de redução; ii) ECA rota A de 1 a 8 passes; iii) ECA rota A de 1 a 4 passes seguido por laminação convencional com redução de 70% e iv) LA com reduções variando de 30 a 50%. Foi realizada a caracterização mecânica e microestrutural do estado deformado e foi estudada a conformabilidade após tratamento térmico de recozimento. Na deformação por ECA foi observado a redução do tamanho de grão, que medido por EBSD e por microscopia eletrônica de transmissão foi de cerca de 1 &#956;m. A evolução da deformação equivalente comparada com o aumento da dureza indicou uma estabilização do tamanho de grão/célula a partir de 4 passes. Após 8 passes a fração de contornos de alto ângulo ultrapassou a de contornos de baixo ângulo, ou seja, ocorreu recristalização dinâmica durante a deformação. A textura após um passe de ECA se aproximou da textura ideal para matriz ECA de 120°. Mas para deformações com quatro e oito passes, a textura evoluiu para uma dispersão das orientações contendo os {111} paralelos à superfície da chapa (fibra &#61543;), o aparecimento de orientações do tipo cubo rodado (100)<011> e de Goss rodado {110} <110>. A laminação convencional após ECA provocou o retorno às orientações típicas de laminação: latão, cobre e Goss. A deformação por laminação assimétrica com uma diferença de velocidade tangencial de 1,2 impôs esforços de cisalhamento, porém foi necessário diminuir a redução por passes de 10% para 5% para que o cisalhamento adicional modificasse sensivelmente a textura. Comparando a estampabilidade dos materiais deformados, observou-se que a deformação ECA aumentou a profundidade da penetração no ensaio Erichsen, enquanto que a laminação diminuiu o índice Erichsen. A laminação assimétrica reduziu a intensidade de textura e destruiu a simetria das orientações cristalográficas. Esta amostra encruada apresentou estampabilidade superior à das amostras laminadas. Após o recozimento, as amostras de laminação convencional, com ou sem pré-deformação ECA apresentaram texturas típicas de material laminado recozido com alto índice de textura tipo cubo. Nas amostras ECA a fibra &#61543; não ficou estável e teve sua intensidade reduzida. Embora a intensidade de textura total tenha permanecido baixa, o aumento de deformação ECA antes do tratamento térmico reforçou a orientação Goss {110}<001>. Já a amostra de laminação assimétrica houve dispersão das orientações na fibra <100>//ND e tanto orientações cubo como cubo rodado estavam presentes. O menor índice de anisotropia planar foi obtido na amostra de 4 passes ECA recozida (representando uma menor tendência ao orelhamento) e um índice de penetração no ensaio Erichsen da mesma ordem de chapas laminadas convencionalmente. Demostrou-se que tanto a deformação ECA quanto a laminação assimétrica podem modificar significantemente a textura de deformação e de recozimento e melhorar as características de conformabilidade da liga de alumínio 1050. Esta etapa de processamento deve estar localizada no final do processo de conformação mecânica, antes do recozimento final.

Page generated in 0.0719 seconds