91 |
Laminar mixing in an SMX static mixerLiu, Shiping. Hrymak, A. N. January 2005 (has links)
Thesis (Ph.D.)--McMaster University, 2005. / Supervisor: Andrew N. Hrymak and Philip E. Wood. Includes bibliographical references (leaves 142-148).
|
92 |
Low-Reynolds-number turbulent boundary layers /Erm, Lincoln. January 1988 (has links)
Thesis (Ph. D.)--University of Melbourne, 1989. / Typescript (photocopy). Includes bibliographical references (leaves 255-261).
|
93 |
Use of laminar ESP for the capture of titanium dioxide particlesPawar, Vishal. January 2004 (has links)
Thesis (M.S.)--Ohio University, June, 2004. / Title from PDF t.p. Includes bibliographical references (leaves 75-76).
|
94 |
Characterization of a microfluidic based direct-methanol fuel cellSprague, Isaac Benjamin, January 2008 (has links) (PDF)
Thesis (M.S. in mechanical engineering)--Washington State University, August 2008. / Includes bibliographical references (p. 73-76).
|
95 |
Two-phase dispersion in micro-channels /Galambos, Paul C. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves [122]-126).
|
96 |
Laminar Newtonian and non-Newtonian converging flow in conical sectionsSutterby, John LLoyd, January 1964 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1964. / Typescript. Includes abstract (leaf ii) and summary (leaves xxi-xxv). Vita. Description based on print version record. Includes bibliographical references (leaves G-1-G-9).
|
97 |
Mass transfer and hydrodynamics in rippling filmsHoward, David Warren, January 1900 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1970. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliography.
|
98 |
Laminar flow through isotropic granular porous media /Woudberg, Sonia. January 2006 (has links)
Thesis (MScIng)--University of Stellenbosch, 2006. / Bibliography. Also availabe via the Internet.
|
99 |
Some problems in fluid flowBrown, Susan N. January 1964 (has links)
No description available.
|
100 |
Conceptual design for a laminar-flying-wing aircraftSaeed, Tariq Issam January 2012 (has links)
The laminar-flying-wing aircraft appears to be an attractive long-term prospect for reducing the environmental impact of commercial aviation. In assessing its potential, a relatively straightforward initial step is the conceptual design of a version with restricted sweep angle. Such a design is the topic of this thesis. In addition to boundary layer laminarisation (utilising distributed suction) and limited sweep, a standing-height passenger cabin and subcritical aerofoil flow are imposed as requirements. Subject to these constraints, this research aims to: provide insight into the parameters affecting practical laminar-flow-control suction power requirements; identify a viable basic design specification; and, on the basis of this, an assessment of the fuel efficiency through a detailed conceptual design study. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly-loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, it is found that the pressure drop from the aerofoil surface to the pump collector ducts determines the power penalty; suggesting there is little benefit in trying to maintain an optimal suction distribution through increased subsurface-chamber complexity. For representative parameter values, the minimum power associated with boundary-layer losses alone contributes some 80% - 90% of the total power requirement. To identify the viable basic design specification, a high-level exploration of the laminar-flying-wing design space is performed, with an emphasis above all on aerodynamic efficiency. The characteristics of the design are assessed as a function of three parameters: thickness-to-chord ratio, wingspan, and unit Reynolds number. A feasible specification, with 20% thickness-to-chord, 80 m span and a unit Reynolds number of 8 x 10[superscript 6] m[superscript -1], is identified; it corresponds to a 187 tonne aircraft which cruises at Mach 0.67 and altitude 22,500 ft, with lift coefficient 0.14. The benefit of laminarisation is manifested in a high lift-to-drag ratio, but the wing loading is low, and the structural efficiency and gust response are thus likely to be relatively poor. On the basis of this specification, a detailed conceptual design is undertaken. A 220-passenger laminar-flying-wing concept, propelled by three turboprop engines, with a cruise range of 9000 km is developed. The estimated fuel burn is 13.9 g/pax.km. For comparison, a conventional aircraft, propelled by four turboprop engines, with a high-mounted, unswept, wing is designed for the same mission specification and propulsion characteristics, and is shown to have a fuel burn of 15.0 g/pax.km. Despite significant aerodynamic efficiency gains, the fuel burn of the laminar flying wing is only marginally better as it suffers from a poor cruise engine efficiency, due to extreme differences between takeoff and cruising requirements, and is much heavier. The laminar flying wing proposed in this thesis falls short of the performance improvements expected of the concept, and is not worth the development effort. It is therefore proposed that research efforts either be focussed on improving the engine efficiency, or switching to a low aspect ratio, high sweep, design configuration.
|
Page generated in 0.1028 seconds