1 |
Cerebellar synaptic plasticity in two animal models of muscular dystrophyAnderson, Jennifer Louise, Medical Sciences, Faculty of Medicine, UNSW January 2008 (has links)
Duchenne muscular dystrophy (DMD) and congenital muscular dystrophy 1A (MDC1A) are the two most common forms of muscular dystrophy in humans, caused by mutations in dystrophin and laminin α2 genes respectively. Both are severe forms of the disease that lead to premature death due and are both now known to have a significant effect on the central nervous system. This project investigated the role of both proteins involved in each of these diseases in cerebellar Purkinje cells of two murine models of disease: the mdx mouse a dystrophin-deficient model of DMD and the dy2J a laminin α2-deficient murine model of MDC1A. In the case of dystrophin further studies were undertaken in order to determine if increasing age had any effects on cerebellar function. It was found that there is no difference in electrophysiological characteristics (RMP, IR, eEPSP) of the cells when compared to appropriate control groups, nor was there any difference when young and aged dystrophin-deficient mdx groups were compared. Evoked IPSP characteristics were examined in young mdx cerebellar Purkinje cells and again no difference was found when compared to wildtype. There was a significant difference in response to the GABAA antagonist bicuculline, with wildtype increasing eEPSP amplitude by almost double that found in mdx. There was no difference in short term plasticity as measured by paired pulse facilitation in any of these groups. There was no difference in paired pulse depression at the inhibitory interneuron- Purkinje cell synapse of young wildtype and mdx cerebellar Purkinje cells. There a significant blunting of long term depression (LTD, (a form of long term synaptic plasticity) between young wildtype and mdx. When young wildtype animals were compared to aged wildtype animals LTD was found to be similar, when young mdx was compared to aged mdx, there was a recovery of LTD seen in the aged population. There was also significant differences in LTD found when littermate controls were compared to dy2J (laminin α2 mutants). A third of the phenotypic animals (dy2J) potentiated. Finally when rebound potentiation (a GABA-ergic form of long term synaptic plasticity in the cerebellum) was compared in young wildtype and mdx mice, mdx mice displayed depression, rather than the expected potentiation in contrast to potentiation (or no change) as seen in all wildtype cells.
|
2 |
Cerebellar synaptic plasticity in two animal models of muscular dystrophyAnderson, Jennifer Louise, Medical Sciences, Faculty of Medicine, UNSW January 2008 (has links)
Duchenne muscular dystrophy (DMD) and congenital muscular dystrophy 1A (MDC1A) are the two most common forms of muscular dystrophy in humans, caused by mutations in dystrophin and laminin α2 genes respectively. Both are severe forms of the disease that lead to premature death due and are both now known to have a significant effect on the central nervous system. This project investigated the role of both proteins involved in each of these diseases in cerebellar Purkinje cells of two murine models of disease: the mdx mouse a dystrophin-deficient model of DMD and the dy2J a laminin α2-deficient murine model of MDC1A. In the case of dystrophin further studies were undertaken in order to determine if increasing age had any effects on cerebellar function. It was found that there is no difference in electrophysiological characteristics (RMP, IR, eEPSP) of the cells when compared to appropriate control groups, nor was there any difference when young and aged dystrophin-deficient mdx groups were compared. Evoked IPSP characteristics were examined in young mdx cerebellar Purkinje cells and again no difference was found when compared to wildtype. There was a significant difference in response to the GABAA antagonist bicuculline, with wildtype increasing eEPSP amplitude by almost double that found in mdx. There was no difference in short term plasticity as measured by paired pulse facilitation in any of these groups. There was no difference in paired pulse depression at the inhibitory interneuron- Purkinje cell synapse of young wildtype and mdx cerebellar Purkinje cells. There a significant blunting of long term depression (LTD, (a form of long term synaptic plasticity) between young wildtype and mdx. When young wildtype animals were compared to aged wildtype animals LTD was found to be similar, when young mdx was compared to aged mdx, there was a recovery of LTD seen in the aged population. There was also significant differences in LTD found when littermate controls were compared to dy2J (laminin α2 mutants). A third of the phenotypic animals (dy2J) potentiated. Finally when rebound potentiation (a GABA-ergic form of long term synaptic plasticity in the cerebellum) was compared in young wildtype and mdx mice, mdx mice displayed depression, rather than the expected potentiation in contrast to potentiation (or no change) as seen in all wildtype cells.
|
Page generated in 0.0787 seconds