• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 11
  • 11
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Effects of atrazine on olfactory-mediated behaviors in Pacific lamprey (Entosphenus tridentatus)

Smith, April G. 07 February 2012 (has links)
Pacific lamprey (Entosphenus tridentatus) are experiencing population declines throughout their range. Xenobiotics could be an important risk factor for lamprey populations. Our goal was to establish if common herbicides, as used in forest management, could affect reproductive fitness. We determined that atrazine was a likely compound of greatest concern to lamprey populations. Using an odorant response behavioral assay we were able to demonstrate that environmentally relevant concentrations of atrazine caused a depressed response to adult lamprey holding tank effluent, likely pheromones. Atrazine also depressed their activity level; the number of times they crossed into the effluent arm after being treated with atrazine was significantly lower than controls. In addition, activity level post exposure to atrazine differed between adult life history stages, something which was not significantly different during control trials. Using an odorant detection assay, based on evaluating ventilation rate, we were able to show that environmentally relevant concentrations of atrazine caused a significant increase in ventilatory response to a repulsive odorant, a conspecific necromone. Through the detection study we also showed that lamprey,exposed to atrazine, had a slight increase in ventilatory response to odor from adult lamprey. If we are concerned about the decline in Pacific lamprey populations, then we should logically be concerned with their exposure to atrazine in the environment. / Graduation date: 2012
22

Cascades Island Lamprey Passage Structure: Evaluating Passage and Migration Following Structure Modifications

Lopez-Johnston, Siena Marie 05 December 2014 (has links)
Pacific lamprey (Entosphenus tridentatus), an endemic species to the Columbia River Basin, U.S.A, has experienced staggering decreases in returns to spawning territories in recent decades. As lamprey are threatened severely by a lack of passage at mainstem dams, lamprey specific passage structures have been designed and constructed to address the problem. The Cascades Island Lamprey Passage Structure (LPS) at Bonneville Dam is the longest and steepest structure of its type, following the addition of an exit pipe which allows lampreys to travel from the tailrace of the dam to the forebay. The intent of this study was to assess lamprey use of the structure and whether the structure hinders lamprey migration to subsequent dams. The study was carried out during the 2013 migration season. The study used three different treatment groups of lampreys released on five dates spanning the migration season (n=75 lamprey). Two of these groups (n=50), with different tagging methods, were released directly into the LPS to assess passage success, travel time, and tagging effect. The third group (n=25) was released into the forebay to test whether the structure impedes migration upstream. Fish were monitored via receiver arrays on the LPS and at dams on the river system. Overall passage efficiency was 74% (37 of 50 used the CI LPS successfully). Mean travel time to navigate the structure was 12 h. Fish size had no significant effect on travel time in the LPS. Water temperature had a significant effect on travel time in the LPS. There was no statistically significant effect of tagging on passage efficiency or travel time. The groups that used the LPS performed slightly better migrating upstream to the next dam than the group that bypassed the structure, but the difference was not significant. The groups that used the LPS traveled to more subsequent dams upstream than did the group that bypassed the LPS. It can be concluded that lamprey passed the structure successfully. Temperature (proxy for seasonality) had an effect on travel time in the LPS; however fish size and tagging had no effect. The LPS does not affect the ability of migrating lampreys to continue migration to subsequent dams. Such findings have important implications for management of lamprey in the region.
23

Investigations of Larval Pacific Lamprey Entosphenus tridentatus Osmotic Stress Tolerance and Occurrence in a Tidally-Influenced Estuarine Stream

Silver, Gregory Shell 08 June 2015 (has links)
Pacific lamprey is a culturally valuable species to indigenous people, and has significant ecological importance in freshwater and marine ecosystems. Over the past several decades, constrictions in range and reductions in Pacific lamprey abundance have been observed in Western North America, and may be indicators of range-wide declines. In the face of declining populations, the U.S. Fish and Wildlife Service has partnered with tribal, state, federal, and local entities to implement a regional Pacific lamprey conservation agreement aimed at reducing threats to Pacific lamprey and improving their habitats and population status. Research needs identified in the conservation agreement include assessing larval Pacific lamprey occupancy and distribution, habitat requirements, and the limiting factors of larval distribution in the freshwater ecosystem. As part of the effort to address these knowledge gaps, we investigated the potential for larval lampreys to occur in tidally-influenced estuarine environments. Research of this type may be valuable for future conservation, management or recovery efforts of Pacific lamprey throughout its range. We employed a two-phased approach, consisting of laboratory and field components to address our aims. We first conducted a series of controlled laboratory experiments to evaluate osmotic stress tolerance and osmoregulatory status of larval Pacific lamprey exposed to a range of (1) fixed salinity in various dilutions of saltwater and (2) oscillating salinity treatments designed to simulate tidal activity. Tolerance was assessed by monitoring and comparing survival of larvae in various treatments through 96 h. Osmoregulatory status was assessed by quantifying and comparing total body water content, plasma osmolality, and plasma cation (i.e., sodium) concentrations among larvae surviving various treatments. In fixed salinity experiments, 100% survival was observed in 0‰, 6‰, 8‰ and 10‰ through 96 h, while 0% survival was observed through 48 h in 12‰, 30 h in 15‰, and 12 h in 25‰ and 35‰. In oscillating salinity experiments, on the other hand, a significant increase in survival (100%) was observed through 96 h in treatments that oscillated between 12‰ and 0‰ (freshwater) at about 6 h intervals versus fixed 12‰ salinity experiments. A significant increase in survival also occurred in oscillating 15‰ treatments (60%) versus fixed 15‰ through 96 h. Linear regression analysis indicated higher environmental salinity in laboratory experiments was significantly related to increases in plasma osmolality and plasma sodium (the most abundant osmotically active plasma cation) concentrations, and concurrent decreases in total body water content among larvae that survived various treatments. Tidal oscillations in salinity appeared to temper the desiccating effects of salinity, as changes in body water content and sodium ion concentration were less abrupt than fixed salinity treatments. These results suggest larvae cannot osmoregulate in hyperosmotic environments, but are able to tolerate some fixed and oscillating hyperosmotic salinity exposure. Consequently, larvae may be able to occur in certain areas of estuaries, such as oligohaline habitats that are characterized by low levels of salinity. Experimental results were used, in part, to guide larval sampling in a tidally-influenced habitat. Occurrence of larval Pacific lamprey and Lampetra spp. (western brook and river lampreys) was subsequently investigated across a gradient of salinity in Ellsworth Creek (Pacific County, Washington) by electrofishing. Larval Pacific and Lampetra spp. were detected within an approximately 300 m long tidally-influenced segment of the study area. Salinity monitoring was conducted in six tidally-influenced reaches where larvae were detected for up to 14 d following electrofishing. Maximum tidal cycle salinity exceeded 15 ppt during 52% to 80% of tidal cycles within tidally-influenced reaches where larvae were detected. These results suggest potential for larval lamprey to occur in certain portions of tidal estuaries. However, long-term residence of larvae in tidally-influenced habitats and whether larvae are able to subsequently survive, grow, transform, and out-migrate is not known and requires further study. Given the potential for tidally-influenced habitats to be occupied by larvae, assessments of larval occurrence in other areas, such as the lower Columbia River, may be warranted. Knowledge of larval lamprey distribution in estuarine environments may be valuable for habitat restoration, and mitigating potential impacts from dredging and other human disturbances.
24

The potential of dynamic segmentation for aquatic ecosystem management : Pacific lamprey decline in the native lands of the Confederated Tribes of Siletz Indians (Oregon, USA)

Palacios, Kelly C. 02 June 2000 (has links)
The Lamprey Eel Decline project conducted by the Confederated Tribes of Siletz Indians (CTSI) combined traditional ecological knowledge, scientific research and geographic information science. CTSI wanted to learn why the Pacific lamprey (Lampetra tridentata), a culturally and ecologically important species, was declining in the streams within their native land area. The project included interviewing native elders, characterizing stream habitat, monitoring water quality, creating a geographic information system (GIS) and educating tribal members on the cultural and ecological importance of the Pacific lamprey. Dynamic segmentation, a GIS data structure, was used to link standard stream survey data on the river unit scale to a base stream coverage (1:24,000). Dynamic segmentation efficiently associates georeferenced data to a linear feature, thus allowing the data to be readily assessable on desktop computer systems. To be more useful to the tribal and local resource managers, it is recommended that these GIS coverages of aquatic habitat should be used in conjunction with additional data coverages and basic regional models for watershed analysis and better management of aquatic ecosystems. / Graduation date: 2001
25

Axonal regeneration of descending brain neurons in larval lamprey

Zhang, Lei, January 1999 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1999. / Typescript. Vita. Includes bibliographical references (leaves 138-148). Also available on the Internet.
26

Ion channels and intrinsic membrane properties of locomotor network neurons in the lamprey spinal cord

Wang, Di, January 2009 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2009. / Härtill 4 uppsatser.
27

Vestibular control of body orientation in lamprey /

Pavlova, Elena, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 5 uppsatser.
28

The adaptive immune system of sea lamprey

Alder, Matthew N. January 2008 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2008. / Title from first page of PDF file (viewed on June 23, 2009). Includes bibliographical references.
29

Axonal regeneration of descending brain neurons in larval lamprey /

Zhang, Lei, January 1999 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1999. / Typescript. Vita. Includes bibliographical references (leaves 138-148). Also available on the Internet.
30

Neuromodulation via endocannabinoids and nitric oxide in the lamprey spinal cord

Kyriakatos, Alexandros, January 2009 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2009. / Härtill 5 uppsatser.

Page generated in 0.0405 seconds