1 |
APPROXIMATION OF MATRIX FUNCTIONS BY QUADRATURE RULES BASED ON THELANCZOS OR ARNOLDI PROCESSESEshghi, Nasim 26 October 2020 (has links)
No description available.
|
2 |
有關賈可比矩陣數值建構上的討論 / On the Numerical Construction of a Jacobi Matrix張天財, Chang, Tian-Tsair Unknown Date (has links)
這篇論文使用前人所提出的七種方法LMGS、ITQR、imITQR、CB、HH、TLD和TLS,去造一個賈可比(Jacobi)矩陣。文中我們使用已知的特徵值(eigenvalue)和特徵向量的第一個成份,去運作這些演算法,並列出數值的結果,以比較這六種方法造出來的賈可比矩陣之準確性。 / In this thesis seven methods LMGS、ITQR、imITQR、CB、HH、TLS and TLD developed in the past are applied to construct a Jacobi matrix. We use the known eige-envalues and the first components of eigenvctors of a Jacobi matrix to execute thes-e algorithms and list the numerical results and compare the accuracy of the computed Jacobi matrix.
|
3 |
Standard and Rational Gauss Quadrature Rules for the Approximation of Matrix FunctionalsAlahmadi, Jihan 11 October 2021 (has links)
No description available.
|
4 |
Iterative tensor factorization based on Krylov subspace-type methods with applications to image processingUGWU, UGOCHUKWU OBINNA 06 October 2021 (has links)
No description available.
|
Page generated in 0.0507 seconds