• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microbial Transformation of Organotin Compounds under Simulated Landfill Conditions / Mikrobiell omsättning av tennorganiska föreningar under simulerade deponiförhållanden

Björn, Annika January 2007 (has links)
Mono- and di-alkyltins are used extensively as heat stabilizers for processing of poly vinyl chloride (PVC). Tin mercaptide stabilizers are some of the most effective PVC stabilizers available. The main applications for tin stabilizers are building/construction products, such as pipes, fittings, siding and profiles (windows etc.), packaging and flexible PVC plastics. Most PVC products have been and are subjected to landfilling, when their use is terminated. The structure of the polymer itself and the substances used as additives have been a concern for environmental authorities in many countries since long, which also includes their presence in landfills. In the case of the organotin stabilizers their leaching out from (PVC) plastics into the leachate phase of landfills with the risk for further transport to ground and surface waters is in focus. The main objectives of this thesis take their start in this background and, thus, included the elucidation of whether organotin compounds (OTs) in stabilized PVC products contribute to the pool of OTs observed in landfill leachates and if these compounds are degradable by the microorganisms developing under anaerobic landfill conditions. To reach these aims and the research questions raised the forwarded PVC materials were added to muniscipal solid waste (MSW) processed in containers used to simulate the ageing of landfills under forced conditions. These include traditional landfill simulation reactors (LSRs) at a scale of ca 100 L and also at a smaller scale ca 5 L constructed for the purpose of this study, i.e. the modular environmental test system (METS). The latter were used to investigate temperature effects on the possible release of OTs from different types of PVC materials. The capacity by microorganisms in landfill environments were used to investigate their capacity to degrade or transform organotin stabilizer compounds focused on in this thesis. Differences in this capacity in relation to the ageing of landfills and exposure to the alkyltin stabilizers were studied with microorganisms sampled from LSRs spiked with PVC over time and from landfill site. Access to sensitive and reliable equipment and analytical protocols for the analysis of OTs and their transformation intermediates and end products are prerequisites for this kind of studies. This necessitated an adoption and adaptation of analytical methods for the low concentrations occurring in the environment. Two methods were established and well served the requirements. Indeed OTs migrated out from especially flexible PVC materials, while rigid PVC was less prone for OT release as judged from the METS simulations. The METS studies showed that the OT release increase substantially at higher temperatures and especially so when the temperature was higher than the glass transition of the PVC.materials. The organotin stabilizers were transformed, partly or completely degraded, by anaerobic microorganisms derived from landfill environments. Upon prolonged exposure to OTs leaching from PVC in LSR simulations the microorganisms displayed a higher efficiency in degradation of the leached OTs. The microorganisms would methylate inorganic tin and metyltin present in the MSW material as well as perform dealkylation depending on the tin concentrations prevailing. During these studies it was discovered that the organotin stabilzers were inhibiting the methanogens and fermentative bacteria, which lead to a retardation of the anaerobic mineralisation of the MSW in the assays. An in depth study revealed that the OTs themselves but also their ligands and degradation products from these together effected the inhibition. However, given the extent of leaching in relation to the water flows in landfills, the concentrations will mainly be too low to pose any risks to the surrounding environment.

Page generated in 0.0757 seconds