• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Índices de vegetação para o mapeamento de lavouras de arroz irrigado na bacia do Rio Gravataí no estado do Rio Grande do Sul

Bastos, Marcelo Almeida January 2014 (has links)
O objetivo deste trabalho foi o de avaliar a aplicação de dois índices de vegetação, NDVI e NDWI, para fins de mapeamento de áreas de arroz irrigado a partir de chaves de classificação temporal. A área do estudo localiza-se na planície costeira interna do Rio Grande do Sul, compondo-se de lavouras de arroz cultivadas no perímetro de irrigação do projeto de assentamento Viamão, região agrícola pertencente à bacia hidrográfica do rio Gravataí. Obtiveram-se imagens digitais de três sistemas sensores, TM (satélite Landsat-5), LISS-III (satélite IRS-P6) e OLI (satélite Landsat-8) para o período compreendido entre primeiro de julho de 2008 e 30 de junho de 2014, correspondendo a seis safras agrícolas. Os dois índices foram calculados para cada cena após o registro geométrico das imagens com a base cartográfica oficial, permitindo avaliar a concordância do mapeamento a partir de imagens de referência de campo. Os padrões de variação temporal dos dois índices de vegetação para as seis safras agrícolas foram analisados para fornecer os parâmetros utilizados na escolha dos limiares dos algoritmos de classificação temporal. As duas chaves de classificação geraram mapas temáticos de uso da terra com duas classes cada: arroz e não arroz. Posteriormente, o resultado do mapeamento para três safras agrícolas sucessivas (2009/10, 2010/11 e 2011/12) foram comparados com a referência e procedida análise da matriz de confusão. Os valores resultantes da análise de concordância ficaram em 77%, 63% e 77% de exatidão global, respectivamente para cada safra considerando o algoritmo do NDVI, e de 88%; 59% e 76%, respectivamente para o algoritmo do NDWI. A análise de discordância evidenciou que a maior parte do erro dos dois algoritmos se deveu à quantidade da discordância, com pouca ou nenhuma discordância na alocação, e que a metodologia empregada pode ser utilizada para auxiliar no mapeamento do plantio de arroz irrigado na área de estudo. / The objective of this work was to evaluate two vegetation indexes, NDVI and NDWI, for mapping paddy rice from temporal classification algorithms. The study area is located in the inner coastal plain of Rio Grande do Sul, consisting of crops of paddy rice in the irrigation perimeter of settlement Viamão, agricultural region in the basin of rio Gravataí. Digital images were obtained from three sensors, TM (satellite Landsat- 5), LISS-III (satellite IRS-P6) and OLI (satellite Landsat-8) for the period from 1 July 2008 and June 30, 2014, corresponding to six agricultural harvests. The two indices were calculated for each scene after the geometric registration of images with the official cartographic base, allowing the correlation mapping from field reference images. The patterns of temporal variation of the two indices of vegetation for six agricultural crops were analyzed to provide the parameters used in the choice of thresholds for temporal classification algorithms. The algorithms generated thematic maps of land use with two classes each: rice and no rice. Subsequently, the result of the mapping for three successive agricultural harvests (2009/10, 2010/11 and 2011/12) were compared with the reference and carried discordance. The resulting of accuracy assessment were in 77%, 63% and 77% of overall accuracy, respectively for each crop considering the NDVI algorithm, and 88%; 59% and 76%, respectively for the NDWI algorithm. The analysis of discordance showed that most of the error of the two algorithms was due to the quantity of disagreement, with little or no disagreement on allocation of disagreement, and that the methodology employed can be used to assist in mapping paddy rice in study area.
2

Índices de vegetação para o mapeamento de lavouras de arroz irrigado na bacia do Rio Gravataí no estado do Rio Grande do Sul

Bastos, Marcelo Almeida January 2014 (has links)
O objetivo deste trabalho foi o de avaliar a aplicação de dois índices de vegetação, NDVI e NDWI, para fins de mapeamento de áreas de arroz irrigado a partir de chaves de classificação temporal. A área do estudo localiza-se na planície costeira interna do Rio Grande do Sul, compondo-se de lavouras de arroz cultivadas no perímetro de irrigação do projeto de assentamento Viamão, região agrícola pertencente à bacia hidrográfica do rio Gravataí. Obtiveram-se imagens digitais de três sistemas sensores, TM (satélite Landsat-5), LISS-III (satélite IRS-P6) e OLI (satélite Landsat-8) para o período compreendido entre primeiro de julho de 2008 e 30 de junho de 2014, correspondendo a seis safras agrícolas. Os dois índices foram calculados para cada cena após o registro geométrico das imagens com a base cartográfica oficial, permitindo avaliar a concordância do mapeamento a partir de imagens de referência de campo. Os padrões de variação temporal dos dois índices de vegetação para as seis safras agrícolas foram analisados para fornecer os parâmetros utilizados na escolha dos limiares dos algoritmos de classificação temporal. As duas chaves de classificação geraram mapas temáticos de uso da terra com duas classes cada: arroz e não arroz. Posteriormente, o resultado do mapeamento para três safras agrícolas sucessivas (2009/10, 2010/11 e 2011/12) foram comparados com a referência e procedida análise da matriz de confusão. Os valores resultantes da análise de concordância ficaram em 77%, 63% e 77% de exatidão global, respectivamente para cada safra considerando o algoritmo do NDVI, e de 88%; 59% e 76%, respectivamente para o algoritmo do NDWI. A análise de discordância evidenciou que a maior parte do erro dos dois algoritmos se deveu à quantidade da discordância, com pouca ou nenhuma discordância na alocação, e que a metodologia empregada pode ser utilizada para auxiliar no mapeamento do plantio de arroz irrigado na área de estudo. / The objective of this work was to evaluate two vegetation indexes, NDVI and NDWI, for mapping paddy rice from temporal classification algorithms. The study area is located in the inner coastal plain of Rio Grande do Sul, consisting of crops of paddy rice in the irrigation perimeter of settlement Viamão, agricultural region in the basin of rio Gravataí. Digital images were obtained from three sensors, TM (satellite Landsat- 5), LISS-III (satellite IRS-P6) and OLI (satellite Landsat-8) for the period from 1 July 2008 and June 30, 2014, corresponding to six agricultural harvests. The two indices were calculated for each scene after the geometric registration of images with the official cartographic base, allowing the correlation mapping from field reference images. The patterns of temporal variation of the two indices of vegetation for six agricultural crops were analyzed to provide the parameters used in the choice of thresholds for temporal classification algorithms. The algorithms generated thematic maps of land use with two classes each: rice and no rice. Subsequently, the result of the mapping for three successive agricultural harvests (2009/10, 2010/11 and 2011/12) were compared with the reference and carried discordance. The resulting of accuracy assessment were in 77%, 63% and 77% of overall accuracy, respectively for each crop considering the NDVI algorithm, and 88%; 59% and 76%, respectively for the NDWI algorithm. The analysis of discordance showed that most of the error of the two algorithms was due to the quantity of disagreement, with little or no disagreement on allocation of disagreement, and that the methodology employed can be used to assist in mapping paddy rice in study area.
3

Índices de vegetação para o mapeamento de lavouras de arroz irrigado na bacia do Rio Gravataí no estado do Rio Grande do Sul

Bastos, Marcelo Almeida January 2014 (has links)
O objetivo deste trabalho foi o de avaliar a aplicação de dois índices de vegetação, NDVI e NDWI, para fins de mapeamento de áreas de arroz irrigado a partir de chaves de classificação temporal. A área do estudo localiza-se na planície costeira interna do Rio Grande do Sul, compondo-se de lavouras de arroz cultivadas no perímetro de irrigação do projeto de assentamento Viamão, região agrícola pertencente à bacia hidrográfica do rio Gravataí. Obtiveram-se imagens digitais de três sistemas sensores, TM (satélite Landsat-5), LISS-III (satélite IRS-P6) e OLI (satélite Landsat-8) para o período compreendido entre primeiro de julho de 2008 e 30 de junho de 2014, correspondendo a seis safras agrícolas. Os dois índices foram calculados para cada cena após o registro geométrico das imagens com a base cartográfica oficial, permitindo avaliar a concordância do mapeamento a partir de imagens de referência de campo. Os padrões de variação temporal dos dois índices de vegetação para as seis safras agrícolas foram analisados para fornecer os parâmetros utilizados na escolha dos limiares dos algoritmos de classificação temporal. As duas chaves de classificação geraram mapas temáticos de uso da terra com duas classes cada: arroz e não arroz. Posteriormente, o resultado do mapeamento para três safras agrícolas sucessivas (2009/10, 2010/11 e 2011/12) foram comparados com a referência e procedida análise da matriz de confusão. Os valores resultantes da análise de concordância ficaram em 77%, 63% e 77% de exatidão global, respectivamente para cada safra considerando o algoritmo do NDVI, e de 88%; 59% e 76%, respectivamente para o algoritmo do NDWI. A análise de discordância evidenciou que a maior parte do erro dos dois algoritmos se deveu à quantidade da discordância, com pouca ou nenhuma discordância na alocação, e que a metodologia empregada pode ser utilizada para auxiliar no mapeamento do plantio de arroz irrigado na área de estudo. / The objective of this work was to evaluate two vegetation indexes, NDVI and NDWI, for mapping paddy rice from temporal classification algorithms. The study area is located in the inner coastal plain of Rio Grande do Sul, consisting of crops of paddy rice in the irrigation perimeter of settlement Viamão, agricultural region in the basin of rio Gravataí. Digital images were obtained from three sensors, TM (satellite Landsat- 5), LISS-III (satellite IRS-P6) and OLI (satellite Landsat-8) for the period from 1 July 2008 and June 30, 2014, corresponding to six agricultural harvests. The two indices were calculated for each scene after the geometric registration of images with the official cartographic base, allowing the correlation mapping from field reference images. The patterns of temporal variation of the two indices of vegetation for six agricultural crops were analyzed to provide the parameters used in the choice of thresholds for temporal classification algorithms. The algorithms generated thematic maps of land use with two classes each: rice and no rice. Subsequently, the result of the mapping for three successive agricultural harvests (2009/10, 2010/11 and 2011/12) were compared with the reference and carried discordance. The resulting of accuracy assessment were in 77%, 63% and 77% of overall accuracy, respectively for each crop considering the NDVI algorithm, and 88%; 59% and 76%, respectively for the NDWI algorithm. The analysis of discordance showed that most of the error of the two algorithms was due to the quantity of disagreement, with little or no disagreement on allocation of disagreement, and that the methodology employed can be used to assist in mapping paddy rice in study area.
4

CARTOGRAPHIE DE LA POLLUTION PARTICULAIRE EN VILLE

Beaulant, Anne-Lise 27 September 2006 (has links) (PDF)
Le Haut Comité de Santé Publique donne des recommandations sur les moyens d'améliorer la connaissance des phénomènes liés à la pollution atmosphérique dans le but d'aider à l'évaluation de l'exposition des citadins. Les travaux de cette thèse s'inscrivent dans ce contexte global en s'orientant vers la cartographie de la concentration en particules en ville. Plusieurs outils existent aujourd'hui qui permettent de dériver des informations sur la qualité de l'air. Ce sont des cartes obtenues par des méthodes d'interpolation spatiale des mesures ponctuelles ou des modèles numériques. Ces deux approches ont des limitations. L'objectif de cette thèse est de contribuer à l'établissement d'une stratégie de cartographie de la pollution atmosphérique sur l'ensemble d'une agglomération à l'échelle de la rue (100 m) en s'appuyant notamment sur l'imagerie satellitaire. La stratégie de cartographie comprend deux méthodes. La méthode des champs typiques vise à améliorer la représentation de la pollution en appliquant des méthodes de fusion de données à des cartes de pollution déjà existantes. Les méthodes de fusion de données sont appliquées à la cartographie de la qualité de l'air. Une formalisation de la méthode des champs typiques est donnée et un essai sur un cas pratique est réalisé. La méthode de densification du réseau de mesure vise à créer des cartes de pollution en interpolant les valeurs de concentration mesurées par les stations. Des stations virtuelles s'ajoutent au stations réelles du réseau de mesure pour le rendre plus dense et améliorer ainsi l'interpolation. Ces stations virtuelles sont déterminées à partir d'une classification sur des éléments décrivant l'environnement des stations. Pour la ville de Strasbourg, 635 stations virtuelles sont ajoutées aux cinq stations réelles existantes. La cartographie par interpolation avec ces stations est améliorée qualitativement et quantitativement (jusqu'à 70 %). Pour valider la définition des stations virtuelles, l'imagerie satellitaire est utilisée. Les longueurs d'ondes autour de 815 nm sont les plus sensibles aux particules. La bande spectrale TM1 du capteur TM de Landsat5 est appropriée pour la détection des particules et est utilisée pour valider les stations virtuelles. 70 % des stations virtuelles ont été validées avec cette approche.

Page generated in 0.0307 seconds