1 |
Language Drift in English : Gender Loss and Semantic ChangeParker, Mary A. 08 1900 (has links)
In parallel passages from Old and Middle English and in noun cognates from Modern English, Old English, and Modern German, the most discernible elements of language drift are gender loss and word meaning change, respectively. They can be observed, discussed, and calculated to show a definite progression toward the development of Modern English.
|
2 |
On iterated learning for task-oriented dialogueSinghal, Soumye 01 1900 (has links)
Dans le traitement de langue et des système de dialogue, il est courant de pré-entraîner des modèles de langue sur corpus humain avant de les affiner par le biais d'un simulateur et de résolution de tâches. Malheuresement, ce type d'entrainement tend aussi à induire un phénomène connu sous le nom de dérive du langage. Concrétement, les propriétés syntaxiques et sémantiques de la langue intiallement apprise se détériorent: les agents se concentrent uniquement sur la résolution de la tâche, et non plus sur la préservation de la langue. En s'inspirant des travaux en sciences cognitives, et notamment l'apprentigssage itératif Kirby and Griffiths (2014), nous proposons ici une approche générique pour contrer cette dérive du langage. Nous avons appelé cette méthode Seeded iterated learning (SIL), ou apprentissage itératif capitalisé. Ce travail a été publié sous le titre (Lu et al., 2020b) et est présenté au chapitre 2. Afin d'émuler la transmission de la langue entre chaque génération d'agents, un agent étudiant est d'abord pré-entrainé avant d'être affiné de manière itérative, et ceci, en imitant des données échantillonnées à partir d'un agent enseignant nouvellement formé. À chaque génération, l'enseignant est créé en copiant l'agent étudiant, avant d'être de nouveau affiné en maximisant le taux de réussite de la tâche sous-jacente. Dans un second temps, nous présentons Supervised Seeded iterated learning (SSIL) dans le chapitre 3, où apprentissage itératif capitalisé avec supervision, qui a été publié sous le titre (Lu et al., 2020b). SSIL s'appuie sur SIL en le combinant avec une autre méthode populaire appelée Supervised SelfPlay (S2P) (Gupta et al., 2019), où apprentissage supervisé par auto-jeu. SSIL est capable d'atténuer les problèmes de S2P et de SIL, i.e. la dérive du langage dans les dernier stades de l'entrainement tout en préservant une plus grande diversité linguistique.
Tout d'abord, nous évaluons nos méthodes dans sous la forme d'une preuve de concept à traver le Jeu de Lewis avec du langage synthetique. Dans un second temps, nous l'étendons à un jeu de traduction se utilisant du langage naturel. Dans les deux cas, nous soulignons l'efficacité de nos méthodes par rapport aux autres méthodes de la litterature.
Dans le chapitre 1, nous discutons des concepts de base nécessaires à la compréhension des articles présentés dans les chapitres 2 et 3. Nous décrivons le problème spécifique du dialogue orienté tâche, y compris les approches actuelles et les défis auxquels ils sont confrontés : en particulier, la dérive linguistique. Nous donnons également un aperçu du cadre d'apprentissage itéré. Certaines sections du chapitre 1 sont empruntées aux articles pour des raisons de cohérence et de facilité de compréhension. Le chapitre 2 comprend les travaux publiés sous le nom de (Lu et al., 2020b) et le chapitre 3 comprend les travaux publiés sous le nom de (Lu et al., 2020a), avant de conclure au chapitre 4. / In task-oriented dialogue, pretraining on human corpus followed by finetuning in a
simulator using selfplay suffers from a phenomenon called language drift. The syntactic
and semantic properties of the learned language deteriorates as the agents only focuses
on solving the task. Inspired by the iterative learning framework in cognitive science
Kirby and Griffiths (2014), we propose a generic approach to counter language drift called
Seeded iterated learning (SIL). This work was published as (Lu et al., 2020b) and is
presented in Chapter 2. In an attempt to emulate transmission of language between generations,
a pretrained student agent is iteratively refined by imitating data sampled from
a newly trained teacher agent. At each generation, the teacher is created by copying the
student agent, before being finetuned to maximize task completion.We further introduce
Supervised Seeded iterated learning (SSIL) in Chapter 3, work which was published as
(Lu et al., 2020a). SSIL builds upon SIL by combining it with the other popular method
called Supervised SelfPlay (S2P) (Gupta et al., 2019). SSIL is able to mitigate the
problems of both S2P and SIL namely late-stage training collapse and low language diversity.
We evaluate our methods in a toy setting of Lewis Game, and then scale it up to
the translation game with natural language. In both settings, we highlight the efficacy of
our methods compared to the baselines.
In Chapter 1, we talk about the core concepts required for understanding the papers presented
in Chapters 2 and 3. We describe the specific problem of task-oriented dialogue
including current approaches and the challenges they face: particularly, the challenge
of language drift. We also give an overview of the iterated learning framework. Some
sections in Chapter 1 are borrowed from the papers for coherence and ease of understanding.
Chapter 2 comprises of the work published as (Lu et al., 2020b) and Chapter 3
comprises of the work published as (Lu et al., 2020a). Chapter 4 gives a conclusion on
the work.
|
Page generated in 0.0731 seconds