• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Subcellular Mechanism and Site of Action of Ionic Lanthanum at the Motor Nerve Terminal

Provan, Spencer D., Miyamoto, Michael D. 01 January 1992 (has links)
The mechanism by which ionic lanthanum (La3+) increases and subsequently decreases spontaneous transmitter release was investigated by recording miniature endplate potentials (MEPPs) at frog neuromuscular junctions. Addition of tetrodotoxin and Co2+ delayed the onset of MEPP frequency increase but did not otherwise prevent the response. Dinitrophenol substantially reduced but did not eliminate the increase, whereas 3,4,5-trimethoxybenzoic acid8-(diethylamino) octyl ester (TMB-8) completely abolished it. Thus, La3+ does not act by depolarizing the terminal or by substituting for Ca2+ at transmitter release sites. Instead, it appears to enter the terminal through Na+ channels and promote Ca2+ release from intracellular organelles. The profound depletion of transmitter with time may be due to the high turnover of transmitter coupled with the inhibition of metabolic processes by La3+.
2

Unbiased Estimates of Quantal Release Parameters and Spatial Variation in the Probability of Neurosecretion

Provan, S. D., Miyamoto, M. D. 01 January 1993 (has links)
A procedure was developed for dealing with two problems that have impeded the use of quantal parameters in studies of transmitter release. The first, involving temporal and spatial biasing in the estimates for the number of functional release sites (n̄) and probability of release (p̄), was addressed by reducing temporal variance experimentally and calculating the bias produced by spatial variance in p (var(s)p). The second, involving inaccuracies in the use of nerve-evoked endplate potentials (EPPs), was circumvented by using only miniature EPPs (MEPPs). Intracellular recordings were made from isolated frog cutaneous pectoris, after decapitation and pithing of the animals, and the concentration of K+ ([K+]) was raised to 10 mM to increase the level of transmitter release. The number of quanta released (m̄) by the EPP was replaced by the number of MEPPs in a fixed time interval (bin), and 500 sequential bins used for each quantal estimate. With the use of 50-ms bins, estimates for var(s)p were consistently negative. This was due to too large a bin (and introduction of undetected temporal variance) because the use of smaller bins (5 ms) produced positive estimates of var(s)p. Increases in m, n, and p but not var(s)p were found in response to increases in [K+] or [Ca2+]/[Co2+]. La3+ (20 μM) produced increases in m and n, which peaked after 20 min and declined toward zero. There were also large increases in p and var(s)p, which peaked and declined only to initial control values. The increase in var(s)p was presumed to reflect La3+-induced release of Ca2+ from intracellular organelles. The results suggest that this approach may be used to obtain unbiased estimates of n̄ and p̄ and that the estimates of var(s)p may be useful for studying Ca2+ release from intraterminal organelles.

Page generated in 0.0471 seconds