• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hereditary predisposition to breast cancer—evaluation of candidate genes

Rapakko, K. (Katrin) 04 May 2007 (has links)
Abstract In Western countries, breast and ovarian cancer are among the most frequent malignancies affecting women. Approximately 5–10% of the cases in the general population have been suggested to be attributed to inherited disease susceptibility. BRCA1 and BRCA2 are the main genes associated with predisposition to breast and ovarian cancer. Mutations in these two genes explain a major part of the families displaying a large number of early-onset breast and/or ovarian cancers, but at least one third of the cases appear to be influenced by other, as yet unidentified genes. Therefore, it is likely that defects in other cancer predisposing genes, perhaps associated with lower disease penetrance and action in a polygenic context, will also be discovered. In the present study, the contribution of germline mutations in putative breast and/or ovarian cancer susceptibility genes, based on their biological function, has been investigated in Finnish breast cancer families. The role of large genomic deletions or other rearrangements in the BRCA1 and BRCA2 genes was evaluated by Southern blot analysis, and mutation analysis of TP53, RAD51, the BRC repeats of BRCA2, and 53BP1 was performed by conformation sensitive gel electrophoresis and DNA sequencing. Germline TP53 mutations were searched for in 108 Finnish breast cancer families without BRCA1 or BRCA2 alterations. In this study, the pathogenic TP53 germline mutation, Arg248Gln, was identified in only one family. This family showed a strong family history of breast cancer and other cancers also fulfilling the criteria for Li-Fraumeni-like syndrome. Germline TP53 mutations are expected to be found in cancer families with clinical features seen in Li-Fraumeni or Li-Fraumeni-like syndromes. In this study, large deletions in BRCA1 and BRCA2 were not observed in 82 breast and/or ovarian cancer families. Likewise, no disease-related aberrations were detected in RAD51, the BRC repeats of BRCA2 or 53BP1 in the 126 breast and/or ovarian cancer families studied. The obtained results were validated by comparing to the occurrence in 288–300 female cancer-free control individuals. These results do not support the hypothesis that alterations in these particular genomic regions play a significant role in breast cancer predisposition in Finland. Thus, there are still genes to be discovered to explain the molecular background of breast cancer.
2

Mechanistic Studies of Human Immune Disease Relevant Genes and CRISPR Genome Editing Using Stem Cells

Yuan, Baolei 11 1900 (has links)
Stem cells, with the ability to self-renew and differentiate into intended cell types, are a valuable tool for disease modeling and mechanistic study. CRISPR-Cas9 has been widely used for genome editing due to its high efficiency and convenience. However, CRISPR-Cas9 has large-deletion safety issues that dramatically restrict its applications. Wiskott-Aldrich syndrome (WAS) is an inborn immunological disorder caused by WASP deficiency. WASP functions in the nucleus, which may help to understand WAS pathology, are poorly defined. Pannexin 1 (PANX1) forms large plasma membrane pores to exchange intracellular small molecules with the extracellular environment and functions in inflammatory processes. The regulatory mechanisms of the PANX1 channel remain obscure. In this dissertation, I focused on mechanistic studies of CRISPR-Cas9 genome editing, and two immune disease relevant genes, WASP and PANX1 using stem cell-derived immune cells. We first found that CRISPR-induced large deletions (LDs) are predominantly mediated by the MMEJ repair pathway through statistical studies. Further, we found POLQ and RPA play vital roles in CRISPR-induced LDs. Modulation of POLQ and RPA can decrease CRISPR-induced LDs and increase HDR efficiency. Using three isogenic WAS iPSC models generated via gene editing, we successfully recapitulated WAS phenotypes, and for the first time, revealed that WASP regulates RNA splicing via epigenetically controlling the transcription of splicing factors and directly participating in the splicing machinery through a liquid-liquid phase separation process. We established a full-length human PANX1 (hPANX1) channel model via cryo-electron microscopy experiments and molecular dynamics simulation study, and found that hPANX1 channel is a homo-heptamer with both the N- and C-termini stretching deeply into the pore funnel. Functional studies of three selected residues support the new hPANX1 channel model and suggest the potential regulatory role of hPANX1 in pyroptosis upon immune responses. Overall, the mechanistic studies of WASP, PANX1 and CRISPR genome editing revealed new roles of WASP in regulating RNA splicing, new functional insights of PANX1 in pyroptosis, and uncovered two critical players POLQ and RPA in CRISPR-induced LDs.

Page generated in 0.3471 seconds