• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of laser ultrasonic and interferometric inspection system for high-volume on-line inspection of microelectronic devices

Valdes, Abel 13 May 2009 (has links)
The objectives of this thesis are to develop and validate laser ultrasonic inspection methods for on-line testing of microelectronic devices. Electronic packaging technologies such as flip chips and BGAs utilize solder bumps as electrical and mechanical connections. Since they are located hidden from view between the device and the substrate, defects such as cracks, voids, misalignments, and missing bumps are difficult to detect using non-destructive methods. Laser ultrasonic inspection is capable of detecting such defects by utilizing a high power laser pulse to induce vibrations in a microelectronic device while measuring the out of plane displacement using an interferometer. Quality can then be assessed by comparing the vibration response of a known-good device to the response of the sample under inspection. The main limitation with the implementation of laser ultrasonic inspection in manufacturing applications is the requirement to establish a known-good reference device utilizing other non-destructive methods. My work will focus on developing a method to inspect flip chip devices without requiring a previously established reference. The method will automatically examine measurement data from a large sample set to identify those devices which are most similar. The selected devices can then be utilized to compose a hybrid reference signal which can be used for comparison and defect detection. Current trends in the electronic packaging industry continue to drive toward increased solder bump density, making it increasingly difficult to generate strong ultrasonic signals in these stiffer devices. To overcome this difficulty, I propose a new excitation method which places the source of ultrasound at the inspection location for each test point on the device surface. This ensures that the same power is available for each inspection location while also increasing the signal to noise ratio. The hardware implementation of this method reduces the system complexity and required automation, which can significantly reduce equipment cost and inspection time. The implementation of the proposed excitation method in conjunction with the use of a hybrid reference signal for defect detection will improve the utility of the laser ultrasonic inspection technique to on-line inspection applications where no other non-destructive methods are currently available.
2

Characterization of Mechanical Properties of Thin-Film Li-Ion BatteryElectrodes from Laser Excitation and Measurements ofZero-Group Velocity Resonances

Yao, Jing 01 March 2019 (has links)
The mechanical properties of thin-film Li-ion battery electrodes are controlled by the micro structure of the constituent materials. In this work, a non-contact and non-destructive measurement of the mechanical properties of electrode films is performed by measurement of zero group velocity (ZGV) resonances. The ZGV Lamb wave modes of a solid bi-layer consisting of a thin metallic layer and a thin compliant coating layer are shown to be dependent on the Young's moduli, thicknesses, densities and Poisson ratios of the layers. Theoretical models are used to quantify the sensitivity of the ZGV resonances to changes in mechanical properties. Experimental ZGV resonances are excited using a pulsed infrared laser and detected using a laser interferometer. Commercial-grade battery films with different coating materials, densities and thicknesses are measured. Young's moduli of the battery electrode layers are estimated using the combination of a theoretical model and experimental results. The effect of the calendering process on the battery materials is also investigated. Results suggest that the Young's modulus of the electrode coating increases drastically after the battery films are calendered. This technique can be used to quantitatively study the mechanical properties of Li-ion battery electrodes to improve overall battery performance.

Page generated in 0.0933 seconds