• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Drop-on-demand bioprinting of HUVECs and capillary-like networks via laser-induced side transfer

Erfanian, Mahyar 12 1900 (has links)
La fabrication de tissus biologiques a été largement étudiée pour ses applications dans la recherche, la transplantation d'organes et le dépistage de drogues. Bien que des tissus minces ou avasculaires aient été fabriqués avec succès auparavant, le maintien de la viabilité des tissus épais nécessite la présence d'un réseau capillaire tout au long de la construction pour permettre l'apport de nutriments et l'élimination des déchets cellulaires par le sang. En plus des cellules endothéliales, l'incorporation de types de cellules de soutien dans le réseau capillaire est nécessaire pour favoriser la survie et la maturation. Comparée à d'autres méthodes de biofabrication, la bioimpression est une technologie prometteuse qui permet la fabrication précise de motifs 3D complexes à haute résolution spatiale. Nous avons conçu de nouveau notre procédé technique de bio-impression laser nommé LIST (de l'anglais \textit{laser-induced side transfer}) dans laquelle la bioencre de la suspension cellulaire passe à travers un capillaire horizontal avec un orifice face à l'échafaudage. Lorsque le laser frappe la bioencre, une bulle se forme qui propulse une gouttelette à travers l'orifice. Nous avons mené une étude détaillée pour caractériser cette bio-impression technique et validé sa cytocompatibilité par l'évaluation de la viabilité de HUVECs imprimés grâce à LIST. Nous avons incorporé des fibroblastes et des péricytes dans nos échantillons et observé le recrutement progressif de ces cellules par les structures de type capillaire HUVEC imprimées sur Matrigel. Des images fluorescentes ont été analysées pour quantifier le recrutement de fibroblastes/péricytes au fil du temps. / The fabrication of biological tissues in laboratory settings has been widely investigated for its applications in research, organ transplantation, and drug screening. Although several previous attempts to generate avascular or thin tissues have been successful, there remains the challenge to create thick functional tissues. Maintaining the viability of thick tissues requires the presence of a capillary network throughout the construct to allow the intake of nutrients and the discard of cellular waste through blood. In addition to endothelial cells, the incorporation of supporting cell types is necessary to promote survival, maturation, and acquire in vivo-like functionality. Compared to other biofabrication methods, bioprinting is a promising technology that enables the precise fabrication of complex 3D patterns at high spatial resolution. We have come up with a new configuration of our in-house laser-based bioprinting technique called laser-induced side transfer (LIST) in which the bioink passes through a horizontal glass capillary with an orifice facing the receiving substrate. When the laser beam causes bubble formation in the bioink, a liquid jet exits through the orifice that will eventually form a droplet. We have conducted a detailed study to characterize this bioprinting technique and validated its cytocompatibility through viability assessment of LIST-printed human umbilical vein endothelial cells (HUVECs). In an effort to generate physiological blood vessels, we incorporated fibroblasts and pericytes in our samples and observed the gradual recruitment of these cells by the printed HUVEC capillary-like structures on Matrigel. Fluorescent images were taken and analyzed to quantify the fibroblast/pericyte recruitment over time.
2

Spatially guided angiogenesis by laser-bioprinting

Hosseini Kolkooh, Sayadeh Sara 05 1900 (has links)
L'ingénierie tissulaire est reconnue comme une méthode potentielle pour réparer ou régénérer les tissus endommagés. Malgré de grandes avancées dans l'ingénierie tissulaire, la réussite de la construction de tissus complexes avec des réseaux vascularisés reste un défi. Dans les modèles d'angiogenèse actuels, les cellules endothéliales sont ensemencées au hasard, n'offrant pas de structure organisée. La technologie de bioimpression par laser offre une résolution d'impression précise. Par cette technique, les structures microvasculaires peuvent être construites pour la fabrication d'organes complexes, ou pour modéliser la progression de la maladie ou les modèles de réponse aux médicaments. Dans cette étude, des techniques de bio-impression au laser ont été utilisées pour étudier le guidage de l'angiogenèse in vitro. Deux techniques basées sur le laser, le transfert direct induit par laser (LIFT) et le transfert latéral induit par laser (LIST) sont utilisées. Comparée à LIFT, la technologie LIST offrait des conditions idéales pour l'impression cellulaire telles que la concentration cellulaire requise pour la formation du tubes endothéliaux et l'uniformité du motif désiré. Nous avons réalisé le modelage de la formation de structures de type capillaire dans des motifs organisés via l'impression LIST. Les constructions de type capillaire formées présentent des motifs uniformes. Les structures formées ont été analysées par microscopie confocale et reconstruction d'images 3D. Bien que le développement de la lumière endothéliale soit incomplet, la technique développée possède le potentiel d'atteindre une stabilisation et un développement de la lumière si l'on recrute un deuxième type de cellule tel que les fibroblastes ou les péricytes. / Tissue engineering has been well acknowledged as a potential method to repair or regenerate damaged tissues in the human body, fulfilling the limitations and shortage in autologous and organ transplantations. Despite great advances in engineering tissues with simple geometry and low requirement for oxygen and blood supply such as cartilage, skin and cornea, success in constructing 3D complex tissues with vascularized networks remains a major challenge. Angiogenesis plays an important role in vascular development in vivo. In current angiogenesis models, endothelial cells are seeded randomly not offering precise and desired patterning. Laser-based bioprinting technology offers precise and high cell printing resolution. By using laser-based bioprinting technology, microvascular structures can be constructed as a platform for complex organ fabrication, disease progression and drug response models. In this study, laser-based bioprinting techniques are employed to study angiogenesis guidance in vitro by patterning endothelial cells. Two laser-based techniques, Laser-Induced Forward Transfer (LIFT) and Laser-Induced Side Transfer (LIST) are used as patterning tools. Compared to LIFT, LIST technology provided ideal conditions for cell printing such as required cell concentration for endothelial tube formation and pattern uniformity. In this study, we achieved the guidance of capillary-like structure formation in desired patterns via LIST printing. The formed capillary-like constructs featured precise patterns and uniformity. The structures were analyzed by confocal microscopy, 3D image reconstruction and frozen section procedure. Though lumen development was incomplete, it possesses the potential to attain further stabilization and lumen development if recruiting a second cell type such as fibroblast or pericyte.

Page generated in 0.0692 seconds