• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Probabilistic solar power forecasting using partially linear additive quantile regression models: an application to South African data

Mpfumali, Phathutshedzo 18 May 2019 (has links)
MSc (Statistics) / Department of Statistics / This study discusses an application of partially linear additive quantile regression models in predicting medium-term global solar irradiance using data from Tellerie radiometric station in South Africa for the period August 2009 to April 2010. Variables are selected using a least absolute shrinkage and selection operator (Lasso) via hierarchical interactions and the parameters of the developed models are estimated using the Barrodale and Roberts's algorithm. The best models are selected based on the Akaike information criterion (AIC), Bayesian information criterion (BIC), adjusted R squared (AdjR2) and generalised cross validation (GCV). The accuracy of the forecasts is evaluated using mean absolute error (MAE) and root mean square errors (RMSE). To improve the accuracy of forecasts, a convex forecast combination algorithm where the average loss su ered by the models is based on the pinball loss function is used. A second forecast combination method which is quantile regression averaging (QRA) is also used. The best set of forecasts is selected based on the prediction interval coverage probability (PICP), prediction interval normalised average width (PINAW) and prediction interval normalised average deviation (PINAD). The results show that QRA is the best model since it produces robust prediction intervals than other models. The percentage improvement is calculated and the results demonstrate that QRA model over GAM with interactions yields a small improvement whereas QRA over a convex forecast combination model yields a higher percentage improvement. A major contribution of this dissertation is the inclusion of a non-linear trend variable and the extension of forecast combination models to include the QRA. / NRF

Page generated in 0.1301 seconds