• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 254
  • 36
  • 34
  • 24
  • 19
  • 15
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 483
  • 85
  • 64
  • 53
  • 53
  • 49
  • 49
  • 47
  • 46
  • 44
  • 43
  • 36
  • 35
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

ESTABLISHMENT OF A QUISCENCE HERPES SIMPLEX TYPE 1 INFECTION IN L929 FIBROBLASTS AND NEURO-2A CELLS BY A NUCLEOSIDE ANALOGUE ACYCLOVIR

Shaklawoon, Noura January 2013 (has links)
No description available.
82

Understanding the Roles of Nuclear Receptors in the Maintenance of HIV Proviral Latency Using Novel Gene Editing Techonology

Milne, Stephanie Celeste 03 September 2015 (has links)
No description available.
83

EPIGENETIC REGULATION OF HIV-1 LATENCY BY HISTONE H3 METHYLTRANSFERASES AND H3K27 DEMETHYLASE

Nguyen, Kien 05 June 2017 (has links)
No description available.
84

Characterizing a Role for the lncRNA BORG during Breast Cancer Progression and Metastasis

Gooding, Alex Joseph 31 August 2018 (has links)
No description available.
85

Establishment of a Quiescent Infection of HSV-1 in L929 Fibroblasts using a Mitotic Inhibitor and IFN-γ

Shinde, Neelam V. 17 April 2012 (has links)
No description available.
86

Monitoring and Analyzing Communication Latency in Distributed Real-time Systems

Liang, Ming 18 August 2003 (has links)
No description available.
87

RESPONSE LATENCY EFFECTS ON CLASSICAL AND ITEM RESPONSE THEORY PARAMETERS USING DIFFERENT SCORING PROCEDURES

Abdelfattah, Faisal A. 25 September 2007 (has links)
No description available.
88

Response Latency in Survey Research: A Strategy for Detection and Avoidance of Satisficing Behaviors

Wanich, Wipada 23 September 2010 (has links)
No description available.
89

Differential regulation of herpes simplex virus-1 and herpes simplex virus-2 during latency and post reactivation in response to stress hormones and nerve trauma in primary adult sensory and sympathetic neurons

Goswami, Poorna 18 August 2022 (has links)
The contrasting infection strategy of herpes simplex virus (HSV) consists of an initial primary lytic infection in epithelial cells, followed by establishment of lifelong latency in sensory and autonomic neurons of the peripheral nervous system that innervate the site of infection. Any cellular stress trigger, ranging from external stimuli such as UV radiation or nerve injury to psychological and physiological stress, can reactivate HSV from latency in the neurons, resulting in recurrent disease episodes. Stress hormones and deprivation of neurotrophic factor (NTF) both have a strong correlation with HSV reactivation from neurons. However, neuronal signaling pathways cardinal to HSV latency and reactivation are still not clear. This dissertation provides new understanding of HSV latency and reactivation in response to two orthogonal stress stimuli, viz. stress hormones epinephrine (EPI) and corticosterone (CORT), as well as NTF deprivation that simulates a nerve injury in primary neuronal cultures. In this dissertation, we demonstrate that physiological stress hormones EPI and CORT differentially regulate HSV-1 and HSV-2 reactivation in adult neurons. Both EPI and CORT treatment reactivated only HSV-1 in sympathetic superior cervical ganglia (SCG) neurons, while HSV-2 was reactivated only by CORT in both sensory trigeminal ganglia (TG) neurons and sympathetic superior cervical (SCG) neurons. EPI utilized the combination of α and β adrenergic receptor complex, while CORT signaled through glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) to reactivate HSV in the neurons. NTFs are tissue-target derived growth factors required for neuronal protection and survival. Neurotrophins are also required for maintaining HSV latency, as NTF deprivation reactivates both HSV-1 and HSV-2 in adult sensory TG and sympathetic SCG neurons. In addition, assessing the temporal kinetics of HSV gene expression showed differential expression profiles of viral immediate-early (IE) genes ICP0, ICP4, ICP27 and trans-activator VP16 following treatment with stress hormones and NTF deprivation in HSV-1 and HSV-2 infected neurons. We also show that different molecular mechanisms are involved in HSV latency and reactivation, which are dependent on the stimuli and the type of neurons. Tyrosine kinase receptor-mediated PI3K-Akt-mTORC signaling cascades have been studied for their role in maintaining HSV latency. Activation of β-catenin signalosome expression has also been implicated during HSV latency and following reactivation. GSK3β is a key effector molecule that inter-connects Akt and β-catenin mediated pathways, forming an Akt-GSK3β-β-catenin signaling axis. Analyzing the Akt-GSK3β-β-catenin signaling in response to stress hormone and NTF deprivation revealed significant differences in protein expression levels between HSV-1 and HSV-2 infected sensory and sympathetic neurons. In HSV-1 infected neurons, the Akt-GSK3β-β-catenin maintains the signal transmission in order to keep the neurons alive, but HSV-2 infections obliterated the entire axis in the adult neurons, particularly in sympathetic neurons. In summary, we demonstrate that HSV-1 and HSV-2 do not have a 'one for all' infection mechanism. Establishment of latency and reactivation by HSV is virus specific, stimulus specific and neuron specific. / Doctor of Philosophy / Herpes simplex viruses (HSVs) are common global viral pathogens that are responsible for causing lifelong painful infections and debilitating disease. The two serotypes of HSV include HSV-1, which is associated with oral or ocular disease but can also cause genital disease, and HSV-2, which is predominantly associated with genital herpes. Once infected, both HSV-1 and HSV-2 are present as lifelong reservoirs in our peripheral neurons. Stress stimuli mediated by our stress hormones or external triggers, such as nerve trauma or an axonal injury, can periodically reactivate the latent virus to cause recurrent disease. Clinical manifestation of HSV recurrences range from asymptomatic viral shedding to painful blisters, cold sores, or herpetic keratitis. In some cases, the virus can spread to the central nervous system, causing encephalitis or recurrent meningitis. No vaccines have been approved yet, and the current treatment utilizes nucleoside analogs, such as acyclovir and its prodrug valacyclovir, to ameliorate the symptoms of HSV infection by halting viral replication and if taken as a daily prophylaxis, reduces the chances of clinical recurrence. Given the route and transmission efficiency of HSV, it is practically impossible to prevent herpes infection. To develop strategic therapeutic interventions to lock the virus in its latent phase in the neurons and prevent it from reactivation, a better understanding of neuronal signaling pathways cardinal to HSV latency and reactivation is necessary. However, neuronal signaling pathways cardinal to HSV latency and reactivation are still not clear. In this dissertation, we make contributions to better understand HSV latency and reactivation in response to stress stimuli. We show that different stress stimuli exert preferential reactivation between HSV-1 and HSV-2, and are further dependent upon the neurons where they establish latency. Our study specifically focuses on three neuronal stressors that have been associated with HSV recurrences: two stress hormones, epinephrine (EPI) and corticosterone (CORT), as well as deprivation of neurotrophic factors (NTF) that simulates nerve injury. We also focused on a neuronal signaling cascade involved in the response to all of these stimuli, Akt-GSK3β-β-catenin, and viral gene transcripts that respond to these stimuli during reactivation. Comprehensive understanding of the neuronal processes and viral gene transcripts involved during HSV-1 and HSV-2 reactivation in neurons will help the herpes virology field towards development of targeted therapies and vaccines to prevent reactivation and recurrent disease.
90

The role of autonomic neurons in the pathegenesis of herpes simplex virus infection

Lee, Sung Seok 27 January 2016 (has links)
Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) are major human pathogens. HSV establishes latency in the nervous system and reactivates to cause recurrent disease, resulting in transmission of progeny virions to naïve individuals. Though HSV-1 and HSV-2 share similar structure and genes, they have distinctive recurrence profiles. Generally, HSV-1 reactivation is associated with disease 'above the waist' and HSV-2 reactivation is associated with disease 'below the waist'. This phenomenon was described decades ago but still remains unexplained. The mechanism of HSV latent infection in the peripheral nervous system (PNS) has been extensively investigated, especially with in sensory neurons. Another component of the peripheral nervous system (PNS), autonomic neurons, were also known to be infected with HSV productively and latently, but largely ignored because of the assumption that there is no difference in the pathogenesis of HSV in the neurons and that both HSV-1 and HSV-2 behave in the same way in different types of neurons. However, autonomic neurons differ in physiological function compared to sensory neurons. Activation factors of autonomic neurons, such as emotional stress, trauma and hormonal fluctuation, are also known HSV reactivation triggering factors. Therefore, I hypothesized that autonomic neurons innervating the site of HSV infection are responsible the different reactivation frequencies of HSV-1 and HSV-2 after peripheral invasion. In this report, the role of autonomic neurons in HSV pathogenesis were examined using the female guinea pig reactivation model. Major findings of this report are that 1) parasympathetic ganglia innervating the ocular region support latent infection of HSV-1 selectively, thus contributing the more frequent HSV-1 reactivation, 2) mixed autonomic ganglia in the genital area support HSV-2 latent infection selectively, and 3) sympathetic neurons in the genital region supported productive and latent infection of HSV-1 and HSV-2 differently. All of the results in this report indicate that autonomic neurons play a distinctive role in HSV pathogenesis compared to the sensory neurons and are responsible for the different reactivation frequencies of HSV-1 and HSV-2. This report raises the importance of autonomic neurons in HSV pathogenesis and challenges the paradigm of HSV pathogenesis. / Ph. D.

Page generated in 0.0595 seconds