1 |
Multiple Magnetic Transitions and Multiferroics in BiMnO3 and Co3TeO6Chou, Chih-Chieh 23 July 2012 (has links)
We studied the pressure effect of polycrystal BiMnO3 (type-I multiferroic) and single crystal Co3TeO6 (type-II multiferroic) with different magnetic fields and pressures. With the primary objective of understanding the pressure effect on BiMnO3, complex multiple magnetic transitions (kink I, II and III) are observed under the maximum applied pressure of 15.94 kbar (~1.6 GPa). Kink I, a long-range soft ferromagnetic transition at TcI ~ 100 K under ambient pressure, is suppressed completely at 11.74 kbar. Kink II emerges at 8.66 kbar along with TcII ~ 93 K. Kink II is a long-range soft ferromagnetic the same as kink I but canted in nature. Kink III, a canted antiferromagnetic transition at TcIII ~ 72.5 K appears along with kink II also at 8.66 kbar. These results indicate the complicated correlation between the lattice distortion and the spin configuration under pressures and magnetic fields in multiferroic system. Whereas, two distinct anomalies (T1 ~ 26 K and T2 ~ 18 K) are observed on single crystal Co3TeO6 in magnetic susceptibility, specific heat, and neutron diffraction measurements. Interestingly, the strong anisotropic magnetic variations are also noticed in high-magnetic-field hysteresis measurements with applied magnetic field parallel to a- and c- axes. Dielectric studies were also carried out in different magnetic fields at the temperature range 5 ¡V 300 K. Concomitantly, frequency-independent step-like dielectric anomaly is observed around 18 K, coinciding with the transition of magnetic susceptibility, specific heat, and neutron diffraction. The dielectric constant is also modified by external magnetic fields. These experimental results strongly suggest the multiferroicity of Co3TeO6. From temperature-dependent X-ray diffraction studies, it is evident that a structural distortion appears around 18 K, responsible of dielectric and/or magnetic ordering. The transition at 18 K is disappeared under pressure above 9.82 kbar, indicative of suppressing structural distortion. Similarly, the lattice distortion and the spin configuration under pressures are important factors for multiferroic property. Through the specific heat and pressure-dependent susceptibility, the structural distortion probably results from the magnetic ordering, indication the dielectric anomaly at 18 K.
|
2 |
Strain and lattice distortion in semiconductor structures : a synchrotron radiation studyLübbert, Daniel January 1999 (has links)
Die Arbeit stellt neu entwickelte Röntgenbeugungsmethoden vor, mit deren Hilfe der Verzerrungszustand des Kristallgitters von Halbleiter-Wafern und -Bauteilen im Detail charakterisiert werden kann. Hierzu werden die aussergewöhnlichen Eigenschaften der an modernen Synchrotrons wie der ESRF (Grenoble) verfügbaren Röntgenstrahlung genutzt. <br>Im ersten Teil der Arbeit werden Röntgen-Diffraktometrie und -Topographie zu einer Untersuchungsmethode kombiniert, mit der die makroskopische Krümmung von Halbleiter-Wafern ebenso wie ihre mikroskopische Defektstruktur abgebildet werden kann. Der zweite Teil ist der Untersuchung von epitaktisch gewachsenen und geätzten Oberflächengittern mit Abmessungen im Submikrometer-Bereich gewidmet. Die unterschiedlichen Gitterkonstanten der beteiligten Halbleitermaterialien führen zu einem inhomogenen Verzerrungsfeld in der Probe, das sich im Röntgenbild durch eine charakteristische Verformung des Beugungsmusters in der Umgebung der Bragg-Reflexe äussert. Die Analyse der experimentell gemessenen Beugungsmuster geschieht mit Hilfe eines neu entwickelten Simulationsverfahrens, das Elastizitätstheorie und eine semi-kinematische Röntgenbeugungstheorie miteinander verbindet. Durch quantitativen Vergleich der Simulationsergebnisse mit den Messdaten kann auf den genauen Verlauf des Verzerrungsfeldes in den Proben zurückgeschlossen werden. Dieses Verfahren wird erfolgreich auf verschiedene Halbleiter-Probensysteme angewendet, und schliesslich auch auf die Untersuchung von akustischen Oberflächenwellen in Halbleiterkristallen übertragen. / This thesis presents newly developed X-ray methods which can be used to characterize in detail the state of distortion of the crystal lattice in semiconductor wafers, devices and nanostructures. The methods use the extraordinary properties of the X-rays available from modern synchrotron sources such as the ESRF (Grenoble). <br>In the first part of the thesis, X-ray diffractometry and X-ray topography are combined into a new method, called X-ray rocking curve imaging, which allows to image the macroscopic curvature of semiconductor wafers as well as the underlying microscopic defect structure. The second part of the thesis deals with the investigation of epitaxially grown and subsequently etched semiconductor gratings with lateral periods below the micrometer. The lattice mismatch between the different materials used in heteroepitaxy leads to a non-uniform strain field in the sample, which is reflected in a characteristic distortion of the X-ray diffraction pattern around each Bragg peak. The experimental data are evaluated with the help of a newly developed simulation procedure which combines elasticity theory with a semi-kinematical theory of X-ray diffraction. From a quantitative comparison of measured and simulated data the detailed shape of the strain field in the samples can be deduced. This procedure is used successfully for the structural characterization of different types of semiconductor gratings, and is finally applied also to the investigation of surface acoustic waves in crystals.
|
3 |
Microstructure, lattice strain and mechanical properties of single phase multi-component alloysThirathipviwat, Pramote 05 July 2019 (has links)
The high entropy alloys (HEAs) have been developed based on the concept of entropic stabilization associated with a large number of constituent elements. The high configurational entropy in HEAs is expected to cause promising characteristic properties, i.e. high microstructural stability and high mechanical properties. In this study, the equiatomic fcc-structured FeNiCoCrMn and the bcc-structured TiNbHfTaZr single phase high entropy alloys (HEAs) were investigated regarding the effect of multiple atom species on microstructure, intrinsic lattice strain and mechanical properties. In a comparison with the HEAs, the sub-alloys having less chemical complexity were studied. The selected sub-alloys of the FeNiCoCrMn HEA were FeNiCoCr, FeNiCo, FeNi alloys and pure Ni, while equiatomic TiNbHfTa, TiNbHf, TiNb alloys and pure Nb were studied to compare with the TiNbHfTaZr HEA.
The samples in this study were prepared by arc-melting, cold-crucible casting and thermomechanical treatment. The thermal phase stability of the FeNiCoCrMn HEA, TiNbHfTaZr HEA and their sub-alloys were observed and no second phase was formed between 300 - 1500 K. In high entropy alloys, the random arrangement of multiple atom species is assumed to cause large atomic displacements at lattice sites, which give rise to a severe lattice distortion. The evidences of lattice distortion in HEAs have been limitedly reported due to a difficulty of experimental investigation. In this work, the pair distribution function (PDF) method was used to assess local strain with analysis of diffuse intensities on total synchrotron X-ray scattering data. The current study found that the level of local lattice strain associated with atomic displacement was a function of atomic size misfit. The local lattice strain of the FeNiCoCrMn HEA was small and comparable to that of the sub-alloys which obtain similar values of the atomic size misfit. In contrast to the FeNiCoCrMn system, the magnitude of the local lattice strain increased with the value of atomic size misfit from the unary Nb sample to the quinary TiNbHfTaZr HEA. The lattice distortion was evident in the TiNbHfTaZr HEA due to large local lattice strain, but the local lattice strain of the FeNiCoCrMn HEA was not anomalously large. The level of lattice strain determines the solid solution hardening as a consequence of the elastic interaction between dislocations and atoms. The comparable level of the lattice strain in the FeNiCoCrMn HEA, its sub-alloys and Ni sample led to narrow range of hardness (64 – 132 HV) and tensile yield strength (60 – 192 MPa). For the bcc-structured samples, the hardness and the yield strength significantly varied depending on the level of local lattice strain, between 80 – 327 HV of hardness and 207 – 985 MPa of tensile yield strength. It is clear from the result that the atomic size misfit influences the level of the local lattice strain and the solid solution hardening.
Cold rotary swaging was used to study the work hardening in the HEAs because it can delay fracture by large hydrostatic stresses. The large plastic deformability was observed in the FeNiCoCrMn and TiNbHfTaZr HEAs. The TiNbHfTaZr HEA was cold-swaged by 90% reduction of the cross-sectional area without intermediate annealing. The FeNiCoCrMn HEA was swaged until 85% reduction of the cross-sectional area; however, it was observed that it could be further deformed. The dislocation densities of the HEAs and its sub-alloys after the cold deformation were calculated as in the range between 1014 - 1015 m-2, in a good agreement with reported values of conventional metals after severe plastic deformation. This finding suggested that the level of dislocation density storage was correlated with the number of the constituent elements, the level of lattice distortion associated with atomic size misfit and the intrinsic properties (i.e. the stacking fault energy and the melting point). Whereas the intrinsic lattice strains of the FeNiCoCrMn HEA and its sub-alloys were comparable, the levels of dislocation storage were different possibly due to a difference of stacking fault energy. For the bcc-structured samples, the dislocation densities of the TiNbHfTaZr HEA, TiNbHfTa and TiNbHf alloys were large due to the large atomic size misfits. The high dislocation density leads to strong interactions between dislocations, which results in high resistance to dislocation motions. The high mechanical properties (hardness and yield strength) in the as-deformed FeNiCoCrMn and TiNbHfTaZr HEA were presented with the evidence of high dislocation densities. Moreover, the hardness and yield strength of the FeNiCoCrMn HEA significantly increased by the deformation, while those of the TiNbHfTaZr HEA after the deformation were slightly changed from the undeformed HEA. The large work hardenability of the FeNiCoCrMn HEA is possibly caused by small solid solution hardening and ease of twin formation.
The research results suggest a further step towards designing an alloy composition for a development of microstructure and mechanical properties of high entropy alloys. It is evidently clear from the findings that the large number of constituent elements (in a term of high configurational entropy) is not only a factor in the determination of lattice distortion, microstructure and mechanical properties, but the type and the combination of constituent elements including the atomic interactions (i.e. atomic size misfit) have also an effect.:Abstract v
Zusammenfassung ix
Contents xiii
1. Motivation and objectives 1
2. Fundamentals 5
2.1 Concept of high entropy alloys 5
2.1.1 Phase formation and thermodynamic 5
2.1.2 Four core effects 10
2.2 Alloy classification of high entropy alloys 13
2.3 Mechanical properties of high entropy alloys 14
3. Experiments 19
3.1 Alloy preparation 19
3.1.1 Alloy selection 19
3.1.2 Melting and casting 21
3.1.3 Thermomechanical treatment 23
3.2 Sample characterization 27
3.2.1 Chemical analyses 27
3.2.2 Differential scanning calorimetry (DSC) 27
3.2.3 Scanning electron microscopy and microstructural analyses 28
3.2.4 X-ray diffraction (XRD) 29
3.2.5 High energy synchrotron X-ray diffraction 29
3.2.6 Mechanical Properties 33
4. Thermal phase stability of single phase high entropy alloys 35
5. An assessment of lattice strain in single phase high entropy alloys 49
5.1 Analysis of micro lattice strain on fcc- and bcc-structured high entropy alloys 50
5.2 Analysis of local lattice strain on fcc- and bcc-structured high entropy alloys 56
6. Solid solution hardening in single phase high entropy alloys 65
6.1 Hardness of fcc- and bcc-structured high entropy alloys 65
6.2 Tensile strength of fcc- and bcc-structured high entropy alloys 70
6.3 Correlation between atomic size misfit and solid solution hardening in Ti-Nb-Hf-Ta-Zr system 82
7. Work hardening in single phase high entropy alloys 91
7.1 Work hardenability of fcc- and bcc-structured high entropy alloys 91
7.2 Dislocation density of fcc- and bcc-structured high entropy alloys after cold swaging 93
8. Summary and outlook 109
8.1 Summary 109
8.2 Outlook 112
References 113
Acknowledgements 131
Erklärung 133 / Die Hochentropielegierungen (HELen) wurden auf der Grundlage des Konzepts der entropischen Stabilisierung entwickelt, was eine große Anzahl von Legierungselementen beinhaltet. Es wird erwartet, dass die hohe Konfigurationsentropie in HELen vielversprechende charakteristische Eigenschaften hervorruft, d.h. hohe mikrostrukturelle Stabilität und hohe mechanische Eigenschaften. In dieser Studie wurden die äquiatomare kfz-strukturierte FeNiCoCrMn und die krz-strukturierte TiNbHfTaZr Einphasen-Hochentropielegierung hinsichtlich der Wirkung mehrerer Atomarten auf das Gefüge, die intrinsische Gitterdehnung und die mechanischen Eigenschaften untersucht. Im Vergleich zu den HELen wurden die Sublegierungen mit geringerer chemischer Komplexität untersucht. Die ausgewählten Sublegierungen der FeNiCoCrMn HEL waren FeNiCoCr, FeNiCo, FeNi-Legierungen und reines Ni, während äquiatomare TiNbHfTa, TiNbHf, TiNbHf, TiNb-Legierungen und reines Nb im Vergleich zur TiNbHfTaZr HEL untersucht wurden.
Die Proben in dieser Studie wurden durch Lichtbogenschmelzen, Kalttiegelguss und thermomechanische Behandlung hergestellt. Die thermische Phasenstabilität der FeNiCoCrMn HEL, der TiNbHfTaZr HEL und ihrer Sublegierungen wurde untersucht und es wurde keine zweite Phase zwischen 300 - 1500 K gebildet. Bei Hochentropielegierungen wird angenommen, dass die zufällige Anordnung mehrerer Atomarten zu großen Atomverschiebungen an den Gitterplätzen führt, die eine starke Gitterverzerrung hervorrufen. Aufgrund der Schwierigkeit der experimentellen Untersuchung wurden Beweise für Gitterverzerrungen bei HELen nur begrenzt berichtet. In dieser Studie wurde die Methode der Paarverteilungsfunktion (PDF) verwendet, um die lokale Dehnung mit Analyse der diffusen Intensitäten der gesamten Synchrotron-Röntgenstreuungsdaten zu beurteilen. Die aktuelle Studie ergab, dass die Höhe der lokalen Gitterdehnung, die mit der atomaren Verschiebung einhergeht, eine Funktion der Differenz der Atomgröße ist. Die lokale Gitterdehnung der FeNiCoCrMn HEL war klein und vergleichbar mit der der Sublegierungen, für die ähnliche Werte für die Atomgrößen-Unterschiede ermittelt wurden. Im Gegensatz zum FeNiCoCrMn-System stieg die Größe der lokalen Gitterdehnung mit dem Wert der Atomgrößendifferenz von der unären Nb-Probe bis zur quinären TiNbHfTaZr HEL. Die Gitterverzerrung war in der TiNbHfTaZr HEL aufgrund der großen lokalen Gitterdehnung offensichtlich, wohingegen die lokale Gitterdehnung der FeNiCoCrMn HEL nicht ungewöhnlich groß war. Die Höhe der Gitterdehnung bestimmt die Mischkristallverfestigung als Folge der elastischen Wechselwirkung zwischen Versetzungen und Atomen. Der vergleichbare Wert der Gitterdehnung in der FeNiCoCrMn HEL, seinen Sublegierungen und den Ni-Proben führte zu einem engen Härte- (64 - 132 HV) und Streckgrenzenbereich (60 - 192 MPa). Für die krz-strukturierten Proben variierten die Härte und die Streckgrenze dagegen je nach Höhe der lokalen Gitterdehnung signifikant, d.h zwischen 80 - 327 HV hinsichtlich der Härte und zwischen 207 - 985 MPa hinsichtlich der Streckgrenze. Aus dem Ergebnis ist ersichtlich, dass die Differenz der Atomgröße einen Einfluss auf die Höhe der lokalen Gitterdehnung und die Mischkristallverfestigung hat.
Das Kalthämmen wurde für die Untersuchung der Kaltverfestigung in den HELen genutzt, da es den Bruch durch die großen hydrostatischen Spannungen verzögern kann. Die große plastische Verformbarkeit wurde bei den FeNiCoCrMn und TiNbHfTaZr HELen beobachtet. Die TiNbHfTaZr HEL wurde ohne Zwischenglühen um 90% der Querschnittsfläche kaltgehämmert. Die FeNiCoCrMn HEL wurde bis zu einer Verkleinerung der Querschnittsfläche von 85% gehämmert, wobei jedoch eine weitere Verformung möglich gewesen wäre. Die Versetzungsdichten der HELen und ihrer Sublegierungen wurden nach dem Verformung in einem Bereich zwischen 1014 - 1015 m-2 berechnet, was in guter Übereinstimmung mit den berichteten Werten konventioneller Metalle nach starker plastischer Verformung ist. Dieses Ergebnis deutete darauf hin, dass die Höhe der gespeicherten Versetzungsdichte mit der Anzahl der beinhaltenden Elemente, dem Grad der Gitterverzerrung im Zusammenhang mit der Differenz der Atomgröße und den intrinsischen Eigenschaften (d.h. der Stapelfehlerenergie und dem Schmelzpunkt) korreliert. Obwohl die intrinsischen Gitterdehnungen der FeNiCoCrMn HEL und seiner Sublegierungen vergleichbar waren, waren die Werte der gespeicherten Versetzungen unterschiedlich, was möglicherweise an einer Differenz der Stapelfehlerenergie lag. Für die krz-strukturierten Proben waren die Versetzungsdichten der TiNbHfTaZr HEL, der TiNbHfTa- und der TiNbHf-Legierungen aufgrund der großen Atomgrößenunterschiede hoch. Die hohe Versetzungsdichte bewirkt starke Wechselwirkungen zwischen den Versetzungen, was zu einem hohen Widerstand gegen Versetzungsbewegungen führt. Die hohen mechanischen Eigenschaften (Härte und Streckgrenze) in den verformten FeNiCoCrMn und TiNbHfTaZr HELen wurden mit dem Nachweis hoher Versetzungsdichten belegt. Darüber hinaus wurden die Härte und die Streckgrenze des FeNiCoCrMn HEL durch das Kalthämmern deutlich erhöht, während die der TiNbHfTaZr HEL nach dem Hämmerprozess nur leicht gegenüber der unverformten HEL verändert wurden. Die große Kaltverfestigung der FeNiCoCrMn HEL ist möglicherweise auf eine geringe Mischkristallhärtung und eine geringfügige Zwillingsbildung zurückzuführen.
Die Forschungsergebnisse empfehlen für die Entwicklung des Gefüges und der mechanischen Eigenschaften von Hochentropielegierungen weitere Schritte hinsichtlich eines zielführenden Legierungsdesigns durchzuführenhin. Aus den Ergebnissen geht eindeutig hervor, dass die große Anzahl an Legierungselementen ( hinsichtlich einer hochkonfigurativen Entropie) nicht die einzige Einflussgrößebei der Bestimmung von Gitterverzerrungen, dem Gefüge und der mechanischen Eigenschaften darstellt, sondern auch die Art und die Kombination der Legierungselementen einschließlich der atomaren Wechselwirkungen (d.h. Atomgrößenunterschiede) einen Effekt haben.:Abstract v
Zusammenfassung ix
Contents xiii
1. Motivation and objectives 1
2. Fundamentals 5
2.1 Concept of high entropy alloys 5
2.1.1 Phase formation and thermodynamic 5
2.1.2 Four core effects 10
2.2 Alloy classification of high entropy alloys 13
2.3 Mechanical properties of high entropy alloys 14
3. Experiments 19
3.1 Alloy preparation 19
3.1.1 Alloy selection 19
3.1.2 Melting and casting 21
3.1.3 Thermomechanical treatment 23
3.2 Sample characterization 27
3.2.1 Chemical analyses 27
3.2.2 Differential scanning calorimetry (DSC) 27
3.2.3 Scanning electron microscopy and microstructural analyses 28
3.2.4 X-ray diffraction (XRD) 29
3.2.5 High energy synchrotron X-ray diffraction 29
3.2.6 Mechanical Properties 33
4. Thermal phase stability of single phase high entropy alloys 35
5. An assessment of lattice strain in single phase high entropy alloys 49
5.1 Analysis of micro lattice strain on fcc- and bcc-structured high entropy alloys 50
5.2 Analysis of local lattice strain on fcc- and bcc-structured high entropy alloys 56
6. Solid solution hardening in single phase high entropy alloys 65
6.1 Hardness of fcc- and bcc-structured high entropy alloys 65
6.2 Tensile strength of fcc- and bcc-structured high entropy alloys 70
6.3 Correlation between atomic size misfit and solid solution hardening in Ti-Nb-Hf-Ta-Zr system 82
7. Work hardening in single phase high entropy alloys 91
7.1 Work hardenability of fcc- and bcc-structured high entropy alloys 91
7.2 Dislocation density of fcc- and bcc-structured high entropy alloys after cold swaging 93
8. Summary and outlook 109
8.1 Summary 109
8.2 Outlook 112
References 113
Acknowledgements 131
Erklärung 133
|
Page generated in 0.1246 seconds