• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 147
  • 59
  • 27
  • 22
  • 8
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 406
  • 95
  • 64
  • 48
  • 46
  • 41
  • 37
  • 36
  • 30
  • 29
  • 26
  • 25
  • 24
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Métodos eficientes para criptografia baseada em reticulados. / Efficient methods for lattice-based cryptography.

João Marcos de Mattos Barguil 14 August 2015 (has links)
Reticulados têm sido aplicados de diferentes maneiras em criptografia. Inicialmente utilizados para a destruição de criptossistemas, eles foram posteriormente aplicados na construção de novos esquemas, incluindo criptossistemas assimétricos, esquemas de assinatura cega e os primeiros métodos para encriptação completamente homomórfica. Contudo, seu desempenho ainda é proibitivamente lenta em muitos casos. Neste trabalho, expandimos técnicas originalmente desenvolvidas para encriptação homomórfica, tornando-as mais genéricas e aplicando-as no esquema GGH-YK-M, um esquema de encriptação de chave pública, e no esquema LMSV, a única construção homomórfica que não sucumbiu a ataques de recuperação de chaves IND-CCA1 até o momento. Em nossos testes, reduzimos o tamanho das chaves do GGH-YK-M em uma ordem de complexidade, especificamente, de O(n2 lg n) para O(n lg n), onde n é um parâmetro público do esquema. A nova técnica também atinge processamento mais rápido em todas as operações envolvidas em um criptossistema assimétrico, isto é, geração de chaves, encriptação e decriptação. A melhora mais significativa é na geração de chaves, que se torna mais de 3 ordens de magnitude mais rápida que resultados anteriores, enquanto a encriptação se torna por volta de 2 ordens de magnitude mais rápida. Para decriptação, nossa implementação é dez vezes mais rápida que a literatura. Também mostramos que é possível aumentar a segurança do esquema LMSV contra os ataques quânticos de recuperação de chaves recentemente publicados pela agência britânica GCHQ. Isso é feito através da adoção de reticulados não-ciclotômicos baseados em anéis polinomiais irredutíveis quase-circulantes. Em nossa implementação, o desempenho da encriptação é virtualmente idêntico, e a decriptação torna-se ligeiramente inferior, um pequeno preço a se pagar pelo aumento de segurança. A geração de chaves, porém, é muito mais lenta, devido à necessidade de se utilizar um método mais genérico e caro. A existência de métodos dedicados altamente eficientes para a geração de chaves nesta variante mais segura do LMSV permanece como um problema em aberto. / Lattices have been applied in many different ways in cryptography. Firstly used for the destruction of cryptosystems, they were later applied in the construction of new schemes, including asymmetric cryptosystems, blind signature schemes and the first methods for fully homomorphic encryption. Nonetheless, performance is still prohibitively slow in many cases. In this work, we expand techniques originally devised for homomorphic encryption, making them more general and applying them to the GGH-YK-M cryptosystem, a lattice-based public-key cryptosystem, and to the LMSV scheme, the only known homomorphic scheme that has not succumbed to INDCCA1 key recovery attacks to this date. In our tests, we reduce public key bandwidth occupation of GGH-YK-M by an order of complexity, specifically, from O(n2 lg n) down to O(n lg n) bits, where n is a public parameter of the scheme. The new technique also attains faster processing in all operations involved in an asymmetric cryptosystem, that is, key generation, encryption, and decryption. The most significant improvement in performance is in key generation, which becomes more than 3 orders of magnitude faster than previous results, while encryption becomes about 2 orders of magnitude faster. For decryption, our implementation is ten times faster than the literature. We also show that it is possible to improve security of LMSV against the quantum key recovery attacks recently published by British GCHQ.We do so by adopting non-cyclotomic lattices based on nearly-circulant irreducible polynomial rings. In our implementation, performance of encryption remains virtually the same, and decryption becomes slightly worse, a small price to pay for the improved security. Key generation, however, is much slower, due to the fact that it is necessary to use a more generic and expensive method. The existence of highly effcient dedicated methods for key generation of this secure variant of LMSV remains as an open problem.
172

Spin and lattice properties of optically trapped exciton polaritons

del Valle-Inclán Redondo, Yago Baltasar January 2018 (has links)
Exciton-polaritons are the fundamental excitations arising from the strong coupling of quantum well excitons and cavity photons in semiconductor microcavities. They are compound bosons for which stimulated scattering and macroscopic occupation of single quantum states can occur at sufficiently high densities. One way of creating such polariton condensates is with nonresonant optical pumping. Doing so creates a large density of free- carriers and excitons that strongly interact and blueshift the polariton energy levels. Using spatially patterned nonresonant fields, the polariton potential landscape can be tailored and optically trapped condensates can be created. This thesis shows that the spin properties of polariton condensates are strongly modified by such trapping. Under linearly polarised pumping, helicity can spontaneously develop at a critical occupation, breaking the parity symmetry. This formation of spin-up/spin-down condensates is explained within a Gross-Pitaevskii model which accurately reproduces the influence of electric fields and condensate density. Under elliptically polarised pumping, two phenomena are observed: the formation of condensates with the opposite handedness to the pump and hysteresis of both occupation and spin with respect to pump power. The spatial dependence of these effects highlights the limitations of commonly used models of polariton condensation. Finally, the suitability of patterned optical fields for the creation of polariton lattices is explored. For small chains of condensates, controllable coupling between adjacent spins is demonstrated, with the formation of antiferromagnetic and ferromagnetic domains. The extent of these domains is strongly affected by sample nonuniformity, fundamentally limiting the scalability of these lattices.
173

Analysis of necessary conditions for the optimal control of a train

Vu, Xuan January 2006 (has links)
The scheduling and Control Group at the University of South Australia has been studying the optimal control of trains for many years, and has developed in-cab devices that help drivers stay on time and minimise energy use. In this thesis, we re-examine the optimal control theory for the train control problem. In particular, we study the optimal control around steep sections of track. To calculate an optimal driving strategy we need a realistic model of train performance. In particular, we need to know a coefficient of rolling resistance and a coefficient of aerodynamic drag. In practice, these coefficients are different for every train and difficult to predict. In the thesis, we study the use of mathematical filters to estimate model parameters from observations of actual train performance.
174

Connectivity Properties of Archimedean and Laves Lattices

Parviainen, Robert January 2004 (has links)
<p>An Archimedean lattice is a graph of a regular tiling of the plane, such that all corners are equivalent. A tiling is regular if all tiles are regular polygons: equilateral triangles, squares, et cetera. There exist exactly 11 Archimedean lattices. Being planar graphs, the Archimedean lattices have duals, 3 of which are Archimedean, the other 8 are called Laves lattices.</p><p>In the thesis, three measures of connectivity of these 19 graphs are studied: the connective constant for self-avoiding walks, and bond and site percolation critical probabilities. The connective constant measures connectivity by the number of walks in which all visited vertices are unique. The critical probabilities quantify the proportion of edges or vertices that can be removed, so that the produced subgraph has a large connected component.</p><p>A common issue for these measures is that they, although intensely studied by both mathematicians and scientists from other fields, have been calculated only for very few graphs. With the goal of comparing the induced orders of the Archimedean and Laves lattices under the three measures, the thesis gives improved bounds and estimates for many graphs. </p><p>A large part of the thesis focuses on the problem of deciding whether a given graph is a subgraph of another graph. This, surprisingly difficult problem, is considered for the set of Archimedean and Laves lattices, and for the set of matching Archimedean and Laves lattices.</p>
175

Connectivity Properties of Archimedean and Laves Lattices

Parviainen, Robert January 2004 (has links)
An Archimedean lattice is a graph of a regular tiling of the plane, such that all corners are equivalent. A tiling is regular if all tiles are regular polygons: equilateral triangles, squares, et cetera. There exist exactly 11 Archimedean lattices. Being planar graphs, the Archimedean lattices have duals, 3 of which are Archimedean, the other 8 are called Laves lattices. In the thesis, three measures of connectivity of these 19 graphs are studied: the connective constant for self-avoiding walks, and bond and site percolation critical probabilities. The connective constant measures connectivity by the number of walks in which all visited vertices are unique. The critical probabilities quantify the proportion of edges or vertices that can be removed, so that the produced subgraph has a large connected component. A common issue for these measures is that they, although intensely studied by both mathematicians and scientists from other fields, have been calculated only for very few graphs. With the goal of comparing the induced orders of the Archimedean and Laves lattices under the three measures, the thesis gives improved bounds and estimates for many graphs. A large part of the thesis focuses on the problem of deciding whether a given graph is a subgraph of another graph. This, surprisingly difficult problem, is considered for the set of Archimedean and Laves lattices, and for the set of matching Archimedean and Laves lattices.
176

Distance Functions and Image Processing on Point-Lattices : with focus on the 3D face- and body-centered cubic grids

Strand, Robin January 2008 (has links)
There are many imaging techniques that generate three-dimensional volume images today. With higher precision in the image acquisition equipment, storing and processing these images require increasing amount of data processing capacity. Traditionally, three-dimensional images are represented by cubic (or cuboid) picture elements on a cubic grid. The two-dimensional hexagonal grid has some advantages over the traditionally used square grid. For example, less samples are needed to get the same reconstruction quality, it is less rotational dependent, and each picture element has only one type of neighbor which simplifies many algorithms. The corresponding three-dimensional grids are the face-centered cubic (fcc) grid and the body-centered cubic (bcc) grids. In this thesis, image representations using non-standard grids is examined. The focus is on the fcc and bcc grids and tools for processing images on these grids, but distance functions and related algorithms (distance transforms and various representations of objects) are defined in a general framework allowing any point-lattice in any dimension. Formulas for point-to-point distance and conditions for metricity are given in the general case and parameter optimization is presented for the fcc and bcc grids. Some image acquisition and visualization techniques for the fcc and bcc grids are also presented. More theoretical results define distance functions for grids of arbitrary dimensions. Less samples are needed to represent images on non-standard grids. Thus, the huge amount of data generated by for example computerized tomography can be reduced by representating the images on non-standard grids such as the fcc or bcc grids. The thesis gives a tool-box that can be used to acquire, process, and visualize images on high-dimensional, non-standard grids.
177

Experimental and Numerical Investigations of Ultra-Cold Atoms

Rehn, Magnus January 2007 (has links)
I have been one of the main responsible for building a new laboratory for Bose-Einstein condensation with 87Rb. In particular, the experimental setup has been designed for performing experiments with Bose-Einstein condensates load into optical lattices of variable geometries. All parts essential for Bose-Einstein condensation are in place. Atoms are collected in a magneto-optical trap, transferred to another vacuum chamber, with better vacuum, and trapped in another magneto-optical trap. Atoms are successfully transferred to a dark magnetic trap, and system for diagnostics with absorption imaging has been realized. We have not yet been able to form a Bose-Einstein condensate, due to a range of technical difficulties. Equipment for alignment of optical lattices with flexible geometry has been designed, built, and tested. This tool has been proven to work as desired, and there is a great potential for a range of unique experiments with Bose-Einstein condensates in optical lattices of various geometries, including superlattices and quasi-periodic lattices. Numerical studies have been made on anisotropic optical lattices, and the existence of a transition between a 2D superfluid phase and a 1D Mott-insulating phase has been confirmed. We have shown that the transition is of Berezinskii-Kosterlitz-Thouless type. In another numerical study it has been shown that using stimulated Raman transitions is a practical method for transferring atoms between states in a double optical lattice. Thus, it will be possible to transfer populations between the lattices, with further applications in qubit read/write operations.
178

Ultracold dipolar gases in optical lattices

Trefzger, Christian 19 April 2010 (has links)
Esta tesis es un trabajo teórico, en el que estudiamos la física de los átomos dipolares bosónicos ultrafríos en retículos ópticos. Éstos gases consisten de átomos o moléculas bosónicas, enfriados bajo la temperatura de degeneración cuántica, típicamente del orden de nK. En éstas condiciones, en una trampa armónica tridimensional (3D), los bosones que interaccionan débilmente condensan y forman un Condensado de Bose Einstein (BEC). Cuando se carga un BEC en un retículo óptico producido por ondas estacionarias de luz láser, se producen nuevos fenómenos físicos. Estos sistemas entonces realizan modelos de tipo Hubbard y pueden ser llevados a regimenes fuertemente correlacionados.En 1989, M. Fisher et. al. predecían que el modelo de Bose-Hubbard homogéneo (BH) presenta la transición de fase cuántica Superfluid-Mott insulator (SF-MI). En 2002, la transición entre éstas dos fases fue observada experimentalmente por primera vez en el grupo de T. Esslinger e I. Bloch. La realización experimental de un BEC dipolar de cromo en el grupo de T. Pfau, y los progresos recientes en las técnicas de enfriamiento y atrapamiento de moléculas dipolares en los grupos de D. Jin e J. Ye, han abierto el camino hacia los gases cuánticos ultra-fríos dominados por la interacción dipolar. La evolución natural, y el reto de hoy en día por parte experimental, es de cargar BEC dipolares en retículos ópticos y estudiar los gases dipolares fuertemente correlacionados.Antes de éste trabajo de doctorado, estudios sobre modelos de BH con interacciones extendidas a los primeros vecinos mostraron la evidencia de nuevas fases cuánticas, como el supersólido (SS) y la fase checkerboard (CB). Debido al carácter de largo alcance de la interacción dipolo-dipolo, que decae con la potencia cúbica inversa de la distancia, es necesario incluir más de un primer vecino para obtener una descripción fiel y cuantitativa de los sistemas dipolares. De hecho, al incluir más vecinos se permiten y se estabilizan aún más nuevas fases.En esta tesis estudiamos modelos de BH con interacciones dipolares, investigando más allá del estado fundamental. Estudiamos un retículo bidimensional (2D) donde los dipolos están polarizados en dirección perpendicular al plano 2D, dando lugar a una interacción dipolar repulsiva e isotrópica. Utilizamos aproximaciones de campo-medio y un ansatz Gutzwiller, que son suficientemente correctos y adecuados para describir este sistema. Encontramos que los gases dipolares en 2D presentan una multitud de estados metaestables de tipo MI, que compiten con el estado fundamental, de modo parecido a sistemas desordenados. Estudiamos en detalle el destino de estos estados metaestables: como pueden ser preparados de manera controlada, como pueden ser detectados, cual es su tiempo de vida debido al tunnelling, y cual es su rol en los procesos de enfriamiento. Además, encontramos que el estado fundamental está caracterizado por estados MI de tipo checkerboard con coeficiente de ocupación n fraccionario (numero medio de partículas por sitio) que depende del cut-off utilizado en el radio de alcance de la interacción. Confirmamos esta predicción estudiando el mismo sistema con métodos Quantum Monte Carlo (worm algorithm). En este caso no utilizamos ningún cut-off en el radio de alcance de la interacción, y encontramos pruebas de una "Devil's staircase" en el estado fundamental, i.e. donde las fases MI aparecen en todos los n racionales del retículo subyacente. Encontramos además, regiones de los parámetros donde el estado fundamental es supersólido, obtenido drogando los sólidos con partículas o con agujeros.En este trabajo, investigamos también como cambia la estructura precedente en 3D. Nos focalizamos en el retículo 3D más sencillo compuesto de dos planos 2D, en el cual los dipolos están polarizados perpendicularmente a los planos; la interacción dipolar es entonces repulsiva por partículas del mismo plano, mientras es atractiva por partículas en el mismo sitio de dos planos diferentes. En cambio suprimimos el tunnelling entre los planos, lo cual hace el sistema equivalente a una mezcla bosónica en un retículo 2D. Nuestros cálculos muestran que las partículas se juntan en parejas, y demostramos la existencia de la nueva fase cuántica Pair Super Solid (PSS).Actualmente estamos estudiando un retículo 2D donde los dipolos están libres de apuntar en ambas direcciones perpendicularmente al plano, lo cual resulta en una interacción a primeros vecinos repulsiva (atractiva) por dipolos alineados (anti-alineados). Encontramos regiones de parámetros donde el estado fundamental es ferromagnético u anti-ferromagnético, y encontramos pruebas de la existencia de la fase cuántica Counterflow Super Solid (CSS).Las nuestras predicciones tienen directas consecuencias experimentales, y esperamos que vengan pronto controladas en experimentos con gases dipolares atómicos y moleculares ultra-fríos. / This thesis is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules, cooled below the quantum degeneracy temperature, typically in the nK range. In such conditions, in a three-dimensional (3D) harmonic trap, weakly interacting bosons condense and form a Bose-Einstein Condensate (BEC). When a BEC is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur.These systems realize then Hubbard-type models and can be brought to a strongly correlated regime. In 1989, M. Fisher et. al. predicted that the homogeneous Bose-Hubbard model (BH) exhibits the Superfluid-Mott insulator (SF-MI) quantum phase transition. In 2002 the transition between these two phases were observed experimentally for the first time in the group of T. Esslinger and I. Bloch. The experimental realisation of a dipolar BEC of Chromium by the group of T. Pfau, and the recent progresses in trapping and cooling of dipolar molecules by the groups of D. Jin and J. Ye, have opened the path towards ultra-cold quantum gases with dominant dipole interactions. A natural evolution and present challenge, on the experimental side is then to load dipolar BECs into optical lattices and study strongly correlated ultracold dipolar lattice gases.Before this PhD work, studies of BH models with interactions extended to nearest neighbours had pointed out that novel quantum phases, like supersolid (SS) and checkerboard phases (CB) are expected. Due to the long-range character of the dipole-dipole interaction, which decays as the inverse cubic power of the distance, it is necessary to include more than one nearest neighbour to have a faithful quantitative description of dipolar systems. In fact, longer-range interactions tend to allow for and stabilize more novel phases.In this thesis we study BH models with dipolar interactions, going beyond the ground state search. We consider a two-dimensional (2D) lattice where the dipoles are polarized perpendicularly to the 2D plane, resulting in an isotropic repulsive interaction. We use the mean-field approximations and a Gutzwiller ansatz which are quite accurate and suitable to describe this system. We find that dipolar bosonic gas in 2D exhibits a multitude of insulating metastable states, often competing with the ground state, similarly as in a disordered system. We study in detail the fate of these metastable states: how can they be prepared on demand, how they can be detected, what is their lifetime due to tunnelling, and what is their role in various cooling schemes. Moreover, we find that the ground state is characterized by insulating checkerboard-like states with fractional filling factors v&#61472;(average number of particles per site) that depend on the cut-off used for the interaction range. We confirm this prediction by studying the same system with Quantum Monte Carlo methods (the worm algorithm). In this case no cut-off is used, and we find evidence for a Devil's staircase in the ground state, i.e. where insulating phases appear at all rational &#61550;&#61472;of the underlying lattice. We also find regions of parameters where the ground state is a supersolid, obtained by doping the solids either with particles or vacancies.In this work, we also investigate how the previous scenario changes in 3D. We focus on the simplest 3D lattice composed of two 2D layers in which the dipoles are polarized perpendicularly to the planes; the dipolar interaction is then repulsive for particles laying on the same plane, while it is attractive for particles at the same lattice site on different layers. Instead we consider inter-layer tunnelling to be suppressed, which makes the system analogous to a bosonic mixture in a 2D lattice. Our calculations show that particles pair into composites, and demonstrate the existence of the novel Pair Super Solid (PSS) quantum phase.Currently we are studying a 2D lattice where the dipoles are free to point in both directions perpendicularly to the plane, which results in a nearest neighbour repulsive (attractive) interaction for aligned (antialigned) dipoles. We find regions of parameters where the ground state is ferromagnetic or antiferromagnetic, and find evidences for the existence of a Counterflow Super Solid (CSS) quantum phase.Our predictions have direct experimental consequences, and we hope that they will be soon checked in experiments with ultracold dipolar atomic and molecular gases.
179

Multi-beam-interference-based methodology for the fabrication of photonic crystal structures

Stay, Justin L. 23 October 2009 (has links)
A variety of techniques are available to enable the fabrication of photonic crystal structures. Multi-beam-interference lithography (MBIL) is a relatively new technique which offers many advantages over more traditional means of fabrication. Unlike the more common fabrication methods such as optical and electron-beam lithography, MBIL is a method that can produce both two- and three-dimensional large-area photonic crystal structures for use in the infrared and visible light regimes. While multi-beam-interference lithography represents a promising methodology for the fabrication of PC structures, there has been an incomplete understanding of MBIL itself. The research in this thesis focuses on providing a more complete, systematic description of MBIL in order to demonstrate its full capabilities. Analysis of both three- and four-beam interference is investigated and described in terms of contrast and crystallography. The concept of a condition for primitive-lattice-vector-direction equal contrasts} is introduced in this thesis. These conditions are developed as nonlinear constraints when optimizing absolute contrast for producing lithographically useful interference patterns (meaning high contrast and localized intensity extrema). By understanding the richness of possibilities within MBIL, a number of useful interference patterns are found that can be created in a straightforward manner. These patterns can be both lithographically useful and structurally useful (providing interference contours that can define wide-bandgap photonic crystals). Included within this investigation are theoretical calculations of band structures for photonic crystals that are fabricatable through MBIL. The resulting calculations show that not only do most MBIL-defined structures exhibit similar performance characteristics compared to conventionally designed photonic crystal structures, but in some cases MBIL-defined structures show a significant increase in bandgap size. Using the results from this analysis, a number of hexagonal photonic crystals are fabricated using a variety of process conditions. It is shown that both rod- and hole-type photonic crystal structures can be fabricated using processes based on both positive and negative photoresist. The "light-field" and "dark-field" interference patterns used to define the hexagonal photonic crystal structures are quickly interchanged by the proper adjustment of each beam's intensity and polarization. The resulting structures, including a large area (~1 cm², 1 x 10⁹ lattice points) photonic crystal are imaged using a scanning electron microscope. Multi-beam-interference lithography provides an enabling initial step for the wafer-scale, cost-effective integration of the impressive PC-based devices into manufacturable DIPCS. While multi-beam-interference lithography represents a promising methodology for the fabrication of PC structures, it lacks in the ability to produce PC-based integrated photonic circuits. Future research will target the lack of a large-scale, cost-effective fabrication methodology for photonic crystal devices. By utilizing diffractive elements, a photo-mask will be able to combine both MBIL and conventional lithography techniques into a single fabrication technology while taking advantage of the inherent positive attributes of both.
180

Robust, reusable qubits for quantum information applications

Gibbons, Michael J. 21 January 2011 (has links)
Most neutral atom quantum computing experiments rely on destructive state detection techniques that eject the detected qubits from the trap. These techniques limit the repetition rate of these experiments due to the necessity of reloading a new quantum register for each operation. We address this problem by developing reusable neutral atom qubits. Individual Rubidium 87 atoms are trapped in an optical lattice and are held for upwards of 300 s. Each atom is prepared in an initial quantum state and then the state is subsequently detected with 95% fidelity with less than a 1% probability of losing it from the trap. This combination of long storage times and nondestructive state detection will facilitate the development of faster and more complex quantum systems that will enable future advancements in the field of quantum information.

Page generated in 0.1648 seconds