• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High Yield Solvothermal Synthesis of Hexaniobate Based Nanocomposites via the Capture of Preformed Nanoparticles in Scrolled Nanosheets

Adireddy, Shivaprasad Reddy 20 December 2013 (has links)
The ability to encapsulate linear nanoparticle (NP) chains in scrolled nanosheets is an important advance in the formation of nanocomposites.These nanopeapods (NPPs) exhibit interesting properties that may not be achieved by individual entities. Consequently, to fully exploit the potential of NPPs, the fabrication of NPPs must focus on producing composites with unique combinations of morphologically uniform nanomaterials. Various methods can produce NPPs, but expanding these methods to a wide variety of material combinations can be difficult. Recent work in our group has resulted in the in situ formation of peapod-like structures based on chains of cobalt NPs. Building on this initial success, a more versatile approach has been developed that allows for the capture of a series of preformed NPs in NPP composites. In the following chapters, various synthetic approaches for NPPs of various material combinations will be presented and the key roles of various reaction parameters will be discussed. Also, uniform hexaniobate nanoscrolls were fabricated via a solvothermal method induced by heating up a mixture of TBAOH, hexaniobate crystallites, and oleylamine in toluene. The interlayer spacing of the nanoscrolls was easily tuned by varying the relative amount and chain lengths of the primary alkylamines. To fabricate NPPs, as-synthesized NPs were treated with hexaniobate crystallite in organic mixtures via solvothermal method. During solvothermal treatment, exfoliated hexaniobate nanosheets scroll around highly ordered chains of NPs to produce the target NPP structures in high yield. Reaction mixtures were held at an aging temperature for a few hours to fabricate various new NPPs (Fe3O4@hexaniobate, Ag@hexaniobate, Au@hexaniobate, Au-Fe3O4@hexaniobate, TiO2@hexaniobate, CdS@hexaniobate, CdSe@hexaniobate, and ZnS@hexaniobate). This versatile method was first developed for the fabrication of magnetic peapod nanocomposites with preformed nanoparticles (NPs). This approach is effectively demonstrated on a series of ferrite NPs (≤ 14 nm) where Fe3O4@hexaniobate NPPs are rapidly (~ 6 h) generated in high yield. When NP samples with different sizes are reacted, clear evidence for size selectivity is seen. Magnetic dipolar interactions between ferrite NPs within the Fe3O4@hexaniobate samples leads to a significant rise in coercivity, increasing almost four-fold relative to free particles. Other magnetic ferrites NPPs, MFe2O4@hexaniobate (M = Mn, Co, Ni), can also be prepared. This synthetic approach to nanopeapods is quite versatile and should be readily extendable to other, non-ferrite NPs or NP combinations so that cooperative properties can be exploited while the integrity of the NP assemblies is maintained. Further, this approach demonstrated selectivity by encapsulating NPs according to their size. The use of polydispersed NP systems is also possible and in this case, evidence for size and shape selectivity was observed. This behavior is significant in that it could be exploited in the purification of inhomogeneous NP samples. Other composite materials containing silver and gold NPs are accessible. Partially filled Fe3O4@hexaniobate NPPs were used as templates for the in situ growth of gold to produce the bi-functional Au- Fe3O4@hexaniobate NPPs. Encapsulation of Ag and Au NP chains with a hexaniobate nanoscroll was shifted the surface plasmon resonance to higher wavelengths. In these composites NPs can be incorporated to form NPP structures, decorated on nanosheets before scrolling, or attached to the surfaces of the nanoscrolls. The importance of this advancement is the promise it holds for the design and assembly of active nanocomposites. One can create important combinations of nanomaterials for potential applications in a variety of areas including catalysis, solar conversion, thermoelectrics, and multiferroics.
2

Fabrication and Characterization of Intricate Nanostructures

Brown, Treva T. 20 December 2017 (has links)
Encapsulation of nanoparticles within hexaniobate nanoscrolls presents interesting advances in the formation of nanocomposites exhibiting unique multi-dimensional properties. Building upon previous successes, facile yet versatile wet-chemical and microwave-irradiation synthetic protocols for the fabrication of a series of hexaniobate composites are presented herein. Solvothermal and, more recently, microwave-assisted methods have been developed that allow for the fabrication of peapod-like structures. During solvothermal treatment, exfoliated hexaniobate nanosheets scroll around highly ordered chains of preformed nanoparticles (NPs) to produce nanopeapods (NPPs). This approach offers versatility and high yields, in addition to the potential for advanced functional device fabrication. For the characterization of these materials, advanced techniques in atomic force microscopy (AFM) were used for investigating the surface of materials at the nanometer scale. Extensive physical, dynamic, and force modulation studies were performed on novel oxide nanocomposites by implementing particular scanning techniques to determine information such as topology, stress-induced behavior at the nanoscale, magnetic behavior, and frictional forces of the nanoscale materials. These composites were then analyzed by topological intermittent contact studies in tapping and contact mode, as well as with derivative techniques of these commonly used scanning probe approaches. In addition to studying surfaces using conventional modes of AFM, the mechanical properties of these nanocomposites were measured via dynamic lateral force modulation (DLFM) and magnetic properties of functionalized magnetic nanosheets were mapped via magnetic sampling modulation (MSM). By utilizing the capabilities of the DLFM imaging mode, elastic properties such as Young’s Modulus were measured from force-distance curves. In addition to this modulation mode, MSM was used to selectively map the vibrating magnetic nanomaterials from a modulated electromagnetic field. The information obtained from these AFM techniques can be helpful in determining the relative structural behavior of these nanocomposites and gauge their use in various applications such as structural engineering of nanoarchitectures as well as studying magnetic characteristics of metal oxide nanocomposites that exhibit characteristics different from their bulk counterparts.

Page generated in 0.1 seconds