• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 573
  • 419
  • 45
  • 38
  • 27
  • 18
  • 14
  • 9
  • 7
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 1423
  • 285
  • 218
  • 214
  • 153
  • 144
  • 127
  • 108
  • 93
  • 91
  • 88
  • 81
  • 77
  • 76
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

The importance of apologizing for organizational transgressions : lessons from the 2008 Maple Leaf meat recall /

Cannon, Michael January 2009 (has links)
Thesis (M.Sc.)--Saint Mary's University, 2009. / Includes abstract. Supervisor: Kevin Kelloway. Includes bibliographical references (leaves 68-75).
212

Decomposition of leaf litter in headwater streams. : Effects of changes in the environment and contribution of microbial and shredder activity on litter decomposition.

Lidman, Johan January 2015 (has links)
Headwaters, which are the most common stream order in the landscape, are mostly dependent on energy produced in the terrestrial system, largely consisting of leaf litter from riparian vegetation. The aim of this study was to investigate the decomposition in headwaters of leaf litter from three native (alder, birch, spruce) and one non-native (lodgepole pine) species and how decomposition responds to changes in the environment. Further, microbial and shredder influences on leaf-litter decomposition and aquatic decomposer ability to adapt to non-native species was investigated. By using field-data from this study, calculations were made to assess if microbes and shredders are resource limited. Litterbags were placed in 20 headwater streams in northern Sweden that varied in water chemistry, stream physical characteristics and riparian vegetation. The results revealed that species litter decomposition of different plant species was affected differently by changes in environmental variables. Alder and birch decomposition were positively associated, whereas lodgepole pine deviated from the other species in decomposition and its relationship with important environmental variables, indicating that the ability of the boreal aquatic systems to decompose litter differs between introduced and native species. When including macroinvertebrates, shredder fragmentation generally increased decomposition, but was not significant for all sites. Resource availability for microbes and shredders was controlled by litter input, and no risk of resource limitations was evident during the study period. These findings highlight a complexity of the decomposition process that needs to be considered when predicting changes due to human activities.
213

EXPLORING small letter delta18O IN THE WATERS WITHIN A TEMPERATE FOREST ECOSYSTEM AND THE EVALUATION OF THE PECLET EFFECT IN A STEADY STATE LEAF WATER MODEL

Halliday, Mark 23 December 2011 (has links)
This thesis attempted to determine whether precipitation at CFB Borden, Ontario Canada is derived from recycled or marine source water using δ18O and to explore the enrichment of leaf water in three temperate forest trees. The d-excess values and rainfall intensity were used as indicators of recycled water and were found to suggest that precipitation at Borden is not derived from recycled water. The leaves of ash, aspen and maple showed significant enrichment in δ18O over xylem water. Maple leaves were significantly more enriched over the leaves of ash and aspen (p-value = 0.0019), despite source water not being significantly different (p-value = 0.1782). Modelling leaf water demonstrated the need for the inclusion of the Peclet effect in the steady state model for ash and aspen leaves, however for maple, the Peclet effect is insignificant. The non-steady state model used measured values of δET, which were uncertain and lead to poor model predictions. / NSERC Strategic Project #351040
214

Cotton Leaf Grade as Influenced by Harvest Aid Regimes and Cultivar Characteristics

Eder, Zachary Phillip 16 December 2013 (has links)
Cotton, Gossypium hirsutum L., leaf grade values can significantly increase with remnants of leaf and bract materials, and can result in increased ginning costs and discounts to the producer. Cotton classed through the USDA-AMS Classing Office in Corpus Christi, Texas has reported increases in leaf grade values beginning in 2000 (USDA, 2012). The impacts of the interaction of agronomic characteristics of cotton cultivars with those of various harvest aid regimes were studied over three growing seasons, and data were used to narrow possible contributors to the observed increased leaf grade values. Multiple trials were conducted throughout the Coastal Bend and Blackland Prairie of Texas, in addition to Tifton, Georgia. Cotton was harvested, lint samples were ginned in a microgin, and lint quality was quantified with HVI. Harvest aid regimes selected provided a broad range of defoliation and desiccation, from a multiple herbicidal and hormonal modes-of-action. Defoliation levels ranged from 0 to 96% and desiccation levels ranged from 0 to 90%. Harvest aid treatments had no impact (P≤0.05) on leaf grade values for either of the years of the trials. Multiple trials were conducted in five counties in Texas, including the Lower and Upper Coastal Bend and the Blackland Prairie, and were defoliated with a uniform harvest aid treatment to identify leaf and bract morphological differences, and to determine their role in leaf grade. Multi-acre module trials were conducted with a smooth leaf cultivar and a hairy leaf cultivar to obtain leaf grade values following commercial ginning. Leaf and bract pubescence, and leaf and bract area were collected to analyze the resulting impact on cotton leaf grade values. Visual quantification of leaf and bract trichome density was quantified on 10 youngest fully-expanded leaves and 10 mid-canopy full sized bolls, respectively, when cotton was at physiological cut-out. Trichome density quantification indicated substantial variation in cultivars and discrepancies from company based rating systems. Leaf grades values generally increased with increasing trichomes densities, although not always statistically significant. In the split plot cultivar and harvest aid trial, harvest aid efficacy was similar for each of the cultivars, but cultivar trichome density was positively influence the cotton leaf grade value.
215

Characterizing the leaf size / number trade-off at different scales

Scott, STEPHANIE 29 October 2009 (has links)
A novel interpretation of leaf mass variation in plants has been recently proposed based on its relationship with variation in leafing intensity – number of leaves produced per unit remaining above-ground dry mass. It is now widely established that between species variation in these two traits is strongly, negatively (and isometrically) correlated for woody and herbaceous species. Possible fitness advantages of higher leafing intensity (requiring smaller leaf size) can be interpreted in terms of the greater concentration of axillary meristems (larger ‘bud bank’), which may provide greater potential deployment flexibility for growth or reproduction. However, no research to date has addressed how these two traits are related at different scales, specifically at the between-individual (within-species) level, or between sexes in dioecious species. For the majority of 24 herbaceous angiosperms studied here, between-individual (within species) co-variation in leaf size and leafing intensity displayed as an isometric trade-off. For the few species with allometric trade-offs, plants with smaller body size produced disproportionately more leaves, indicating a possible mechanism for promoting reproductive economy when plant size is suppressed (e.g. by competition). For two out of three woody dioecious species, and two out of three herbaceous dioecious species, males tended to produce more, smaller leaves than females, possibly promoting pollen dispersal through a more broadly-spaced floral display (developing from more numerous axillary meristems). In contrast, the larger (but fewer) leaves in females may serve to maximize local photosynthetic resources available for axillary fruit and seed maturation. Males and females did not differ in branching rates associated with differences in leafing intensities, but in one herbaceous species, higher leafing intensity in males was associated with higher flower production than in females. In the larger 24-species data set, there was no evidence that species with higher leafing intensity (providing more axillary meristems) was associated with either a greater magnitude or a greater flexibility in branching or flowering intensity. Additional studies are required to explore the possibility that large ‘bud banks’ of axillary meristems (conferred by high leafing intensity) may promote effective mechanisms for tolerating environmental variability, responding to damage (e.g. from herbivory), and/or maximizing reproductive economy. / Thesis (Master, Biology) -- Queen's University, 2009-10-27 21:20:03.509
216

LiDAR and WorldView-2 Satellite Data for Leaf Area Index Estimation in the Boreal Forest

Pope, Graham 25 September 2012 (has links)
Leaf Area Index (LAI) is an important input variable for forest ecosystem modeling as it is a factor in predicting productivity and biomass, two key aspects of forest health. Current in situ methods of determining LAI are sometimes destructive and generally very time consuming. Other LAI derivation methods, mainly satellite-based in nature, do not provide sufficient spatial resolution or the precision required by forest managers. This thesis focused on estimating LAI from: i) height and density metrics derived from Light Detection and Ranging (LiDAR); ii) spectral vegetation indices (SVIs), in particular the Normalized Difference Vegetation Index (NDVI); and iii) a combination of these two remote sensing technologies. In situ measurements of LAI were calculated from digital hemispherical photographs (DHPs) and remotely sensed variables were derived from low density LiDAR and high resolution WorldView-2 data. Multiple Linear Regression (MLR) models were created using these variables, allowing forest-wide prediction surfaces to be created. Results from these analyses demonstrated: i) moderate explanatory power (i.e., R2 = 0.54) for LiDAR models incorporating metrics that have proven to be related to canopy structure; ii) no relationship when using SVIs; and iii) no significant improvement of LiDAR models when combining them with SVI variables. The results suggest that LiDAR models in boreal forest environments provide satisfactory estimations of LAI, even with low ranges of LAI for model calibration. On the other hand, it was anticipated that traditional SVI relationships to LAI would be present with WorldView-2 data, a result that is not easily explained. Models derived from low point density LiDAR in a mixedwood boreal environment seem to offer a reliable method of estimating LAI at a high spatial resolution for decision makers in the forestry community. / Thesis (Master, Geography) -- Queen's University, 2012-09-24 16:18:09.96
217

Leaf area index in a tropical dry forest in Mexico

Huang, Yingduan Unknown Date
No description available.
218

Ecophysiological leaf traits of Cerrado woody plants

Ball, Ronald Aaron Unknown Date
No description available.
219

Leaf ultrastructural studies of Avicennia marina in response to salinity under natural conditions.

Hiralal, Omitha. January 2007 (has links)
In Richards Bay Harbour, the mangrove Avicennia marina exhibits a distinct natural productivity gradient. The fringe site, which is regularly inundated twice daily by tides, supports luxuriant adult A. marina trees that are 6-10 m tall and which form a dense, well-developed canopy. The landward site which is only inundated during high spring tides, supports diminutive or dwarf A. marina that are less than 1.5 m in height. In this study we compared leaves from fringe and dwarf sites with respect to morphology, ultrastructure and ecophysiology. Alterations in leaf morphology, ultrastructure and physiology of A. marina were compared at the fringe site (35 ‰) and dwarf site (60 ‰) using morphometric measurements, light (LM), transmission (TEM) and scanning microscopy (SEM). SEM and light microscopy revealed that multicellular salt glands were located on the thick, cutinised adaxial surface from leaves of both sites. The glands appeared to be scattered and protruding from individual crypts in fringe mangrove leaves whilst they appeared sunken and occluded by cuticular material in dwarf mangrove leaves. The salt glands on the abaxial surface were not sunken but obscured by the indumentum of peltate trichomes. Ultrastructural changes observed in dwarf mangrove leaves were associated with cuticle, cell walls, chloroplasts, mitochondria of mesophyll tissue and salt glands. Fringe mangrove leaves had chloroplasts with typical well-developed grana and stroma. Ultrastructural changes of chloroplasts were evident in dwarf mangrove leaves and included swelling and separation of thylakoids, disintegration of granal stacking and integranal lamellae, as well as loss of the integrity of the chloroplast envelope. Multivesicular structures were commonly found in vacuoles and associated with chloroplasts and mitochondria in both leaf types. In fringe mangrove leaves, mitochondria appeared spherical to tubular with a relatively smooth outer membrane and a highly convoluted inner membrane. Swelling and vacuolation of mitochondrial membranes, cristae and mitochondrial clustering in the cytoplasm around the chloroplasts were evident in dwarf mangrove leaves. Extensive lipid accumulation in the form of large, dense plastoglobuli occurred in the chloroplasts of dwarf mangrove leaves. There were characteristic differences in salt gland morphology of fringe and dwarf mangrove leaves, namely in the cell walls, vacuoles, and vesicle formation. In salt glands of dwarf mangrove leaves, a distinct withdrawal of the cytoplasm from the cell wall was observed. This feature was not observed in salt glands of fringe mangrove leaves. Numerous large vacuoles were observed in the secretory cells of glands of dwarf mangrove leaves compared to those of fringe plants. Multivesicular structures, vesicles and mitochondria were common features in both leaf types. Physiological studies involved a comparison of osmotic and ionic relations as well as whole plant responses in fringe and dwarf mangrove leaves. Relative leaf water content decreased by 7.8 % and specific leaf area by 17 % in dwarf compared to those of fringe mangroves. Dwarf mangrove leaves were 27.6 % thicker and leaf cuticle thickness 37.4 % higher than those from fringe mangroves. Fringe mangrove leaves displayed higher total chlorophyll contents by 27 %, with chlorophylls a and b being 22 % and 39.6 % higher, respectively than those of dwarf mangroves. Salt gland frequencies were higher in the apex, mid-lamina and base of fringe than dwarf mangrove leaves by 36 %, 45 % and 51 %, respectively. The concentration of glycinebetaine, a compatible, N-containing osmolyte was significantly higher by 40 % in dwarf than in fringe mangrove leaves. Concentrations of proline were 27 % lower in dwarf than in fringe mangrove leaves. The predominant inorganic ion detected in mature leaves was Na+, which was 19 % higher in dwarf than fringe mangrove leaves. Phosphorus was an element that appeared deficient in dwarf mangrove leaves, being 50 % lower compared to fringe mangrove leaves. The results of this investigation indicated that there were cytomorphological alterations as well as differences in physiological responses in leaves of A. marina at fringe and dwarf sites. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2007.
220

Hydraulic characteristics and photosynthetic capacity of Chrysanthemoides monilifera L. when grown in contrasting environmental conditions.

Patton, Alana B. January 2008 (has links)
A semi-herbaceous. pioneer plant Chryzanihtmoidts moniiifera was grown under varying environmental condition; in order to assess whether altering environmental variables would affect its hydraulic conductance and photo synthetic rates The plants were grown under sun and shade conditions, subjected to low and high watering treatments and to two different nutrient regimes. Steady-state gaseous exchange parameters, and whole-plant and leaf hydraulic conductance were measured on plants from each treatment. A key aspect of this study was to investigate how the following leaf components - petiole. major veins, minor veins and extravascular tissue - contributed to die overall resistance to water flow in the leaf (Ricaf). Vein orders were cut in specific sequences to interrupt water flow which then allowed the partitioning of leaf hydraulic resistances. The results showed that die maximum pbotosynthetic rate, under light saturating CO;. (A,^ was significantly affected by both nutrient and light treatments Environmental conditions (light, water and nutrient treatments) did not. however, affect the CO.- compensation point, or dark respiration of the measured A:C, curves for C. moniaftra. In terms of whole-plant hydraulic conductance, the shoot, stem and root were not significantly affected by environmental treatments. When investigating R«„. only the light treatments significantly affected the resistance of the petiole, extra vascular tissue, and minor vans Rf<trfc was found to be positively correlated with and contributed between 34-59 % of the total leaf resistance When considering the resistance of the leaf it was observed that the vascular tissue of the leaf contained up to 90 % of the total leaf resistance. The results from this study show that the hydraulic conductance of C. moniijfera was found to be significantly affected by light treatment; only. Water and nutrient treatments did not have a substantial impact upon the water flow of the plant. Leaf hydraulic resistance was partitioned differently to that of results from ocher studies, in that the petiole and major veins contained the majority of the leaf resistance In retrospect this study would have been more effective if C. monilitfera treatments were more severe, in terms of water and nutrients Further studies should focus on a comparison of leaf hydraulic resistance partitioning of other species, across a range of plant types. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2008.

Page generated in 0.1036 seconds