• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Conserved Family of ER Proteins NLF Regulate the Na+ Leak Channel NCA/NALCN in Caenorhabditis elegans and Mus musculus

Alcaire, Salvador 20 November 2013 (has links)
Neuronal excitability is controlled by multiple ion channels at the plasma membrane of neurons. Recently, the Na+ leak channel, NCA in C. elegans and NALCN in M. Musculus, has been identified as the molecular entity responsible for the background Na+ leak at rest in neurons. In this thesis, I show that NLF-1 (NCA Localization Factor) and mouse NLF-1, a group of newly defined, uncharacterized proteins, are endoplasmic reticular proteins required for the trafficking of NCA-1 and NCA-2 to their target axonal membrane. In primary mouse cortical neurons, knockdown of mNLF-1 partially abolishes the background Na+ leak current. Furthermore, NLF-1 and mNLF-1 directly interact with domain II S5/P-loop/S6 of NALCN through a membrane yeast-two-hybrid assay. In C. elegans, this region is required in vivo in NCA-1 for it’s trafficking. Finally, I identify novel NLF-1 interacting partners through a MYTH assay.
2

A Conserved Family of ER Proteins NLF Regulate the Na+ Leak Channel NCA/NALCN in Caenorhabditis elegans and Mus musculus

Alcaire, Salvador 20 November 2013 (has links)
Neuronal excitability is controlled by multiple ion channels at the plasma membrane of neurons. Recently, the Na+ leak channel, NCA in C. elegans and NALCN in M. Musculus, has been identified as the molecular entity responsible for the background Na+ leak at rest in neurons. In this thesis, I show that NLF-1 (NCA Localization Factor) and mouse NLF-1, a group of newly defined, uncharacterized proteins, are endoplasmic reticular proteins required for the trafficking of NCA-1 and NCA-2 to their target axonal membrane. In primary mouse cortical neurons, knockdown of mNLF-1 partially abolishes the background Na+ leak current. Furthermore, NLF-1 and mNLF-1 directly interact with domain II S5/P-loop/S6 of NALCN through a membrane yeast-two-hybrid assay. In C. elegans, this region is required in vivo in NCA-1 for it’s trafficking. Finally, I identify novel NLF-1 interacting partners through a MYTH assay.
3

The role of voltage-independent cation channels in shaping spinal nociceptive circuit output and pain sensitivity in developing rodents

Ford, Neil C. 02 October 2018 (has links)
No description available.

Page generated in 0.0603 seconds