• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 8
  • 8
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural dynamics of learning

Marton, Ference. January 1970 (has links)
Akademisk avhandling--Göteborg. / Extra t.p., with thesis statement, inserted. Bibliography: p. 102-109.
2

Identification and Assessment of Gene Signatures in Human Breast Cancer/Identification et évaluation de signatures géniques dans le cancer du sein humain

Haibe-Kains, Benjamin B 02 April 2009 (has links)
This thesis addresses the use of machine learning techniques to develop clinical diagnostic tools for breast cancer using molecular data. These tools are designed to assist physicians in their evaluation of the clinical outcome of breast cancer (referred to as prognosis). The traditional approach to evaluating breast cancer prognosis is based on the assessment of clinico-pathologic factors known to be associated with breast cancer survival. These factors are used to make recommendations about whether further treatment is required after the removal of a tumor by surgery. Treatment such as chemotherapy depends on the estimation of patients' risk of relapse. Although current approaches do provide good prognostic assessment of breast cancer survival, clinicians are aware that there is still room for improvement in the accuracy of their prognostic estimations. In the late nineties, new high throughput technologies such as the gene expression profiling through microarray technology emerged. Microarrays allowed scientists to analyze for the first time the expression of the whole human genome ("transcriptome"). It was hoped that the analysis of genome-wide molecular data would bring new insights into the critical, underlying biological mechanisms involved in breast cancer progression, as well as significantly improve prognostic prediction. However, the analysis of microarray data is a difficult task due to their intrinsic characteristics: (i) thousands of gene expressions are measured for only few samples; (ii) the measurements are usually "noisy"; and (iii) they are highly correlated due to gene co-expressions. Since traditional statistical methods were not adapted to these settings, machine learning methods were picked up as good candidates to overcome these difficulties. However, applying machine learning methods for microarray analysis involves numerous steps, and the results are prone to overfitting. Several authors have highlighted the major pitfalls of this process in the early publications, shedding new light on the promising but overoptimistic results. Since 2002, large comparative studies have been conducted in order to identify the key characteristics of successful methods for class discovery and classification. Yet methods able to identify robust molecular signatures that can predict breast cancer prognosis have been lacking. To fill this important gap, this thesis presents an original methodology dealing specifically with the analysis of microarray and survival data in order to build prognostic models and provide an honest estimation of their performance. The approach used for signature extraction consists of a set of original methods for feature transformation, feature selection and prediction model building. A novel statistical framework is presented for performance assessment and comparison of risk prediction models. In terms of applications, we show that these methods, used in combination with a priori biological knowledge of breast cancer and numerous public microarray datasets, have resulted in some important discoveries. In particular, the research presented here develops (i) a robust model for the identification of breast molecular subtypes and (ii) a new prognostic model that takes into account the molecular heterogeneity of breast cancers observed previously, in order to improve traditional clinical guidelines and state-of-the-art gene signatures./Cette thèse concerne le développement de techniques d'apprentissage (machine learning) afin de mettre au point de nouveaux outils cliniques basés sur des données moleculaires. Nous avons focalisé notre recherche sur le cancer du sein, un des cancers les plus fréquemment diagnostiqués. Ces outils sont développés dans le but d'aider les médecins dans leur évaluation du devenir clinique des patients cancéreux (cf. le pronostique). Les approches traditionnelles d'évaluation du pronostique d'un patient cancéreux se base sur des critères clinico-pathologiques connus pour être prédictifs de la survie. Cette évaluation permet aux médecins de décider si un traitement est nécessaire après l'extraction de la tumeur. Bien que les outils d'évaluation traditionnels sont d'une aide importante, les cliniciens sont conscients de la nécessité d'améliorer de tels outils. Dans les années 90, de nouvelles technologies à haut-débit, telles que le profilage de l'expression génique par biopuces à ADN (microarrays), ont été mises au point afin de permettre aux scientifiques d'analyser l'expression de l'entièreté du génôme de cellules cancéreuses. Ce nouveau type de données moléculaires porte l'espoir d'améliorer les outils pronostiques traditionnels et d'approfondir nos connaissances concernant la génèse du cancer du sein. Cependant ces données sont extrêmement difficiles à analyser à cause (i) de leur haute dimensionalité (plusieurs dizaines de milliers de gènes pour seulement quelques centaines d'expériences); (ii) du bruit important dans les mesures; (iii) de la collinéarité entre les mesures dûe à la co-expression des gènes. Depuis 2002, des études comparatives à grande échelle ont permis d'identifier les méthodes performantes pour l'analyse de groupements et la classification de données microarray, négligeant l'analyse de survie pertinente pour le pronostique dans le cancer du sein. Pour pallier ce manque, cette thèse présente une méthodologie originale adaptée à l'analyse de données microarray et de survie afin de construire des modèles pronostiques performants et robustes. En termes d'applications, nous montrons que cette méthodologie, utilisée en combinaison avec des connaissances biologiques a priori et de nombreux ensembles de données publiques, a permis d'importantes découvertes. En particulier, il résulte de la recherche presentée dans cette thèse, le développement d'un modèle robuste d'identification des sous-types moléculaires du cancer du sein et de plusieurs signatures géniques améliorant significativement l'état de l'art au niveau pronostique.
3

Performing and making use of mobility prediction

François, Jean-Marc 22 May 2007 (has links)
Mobility prediction is defined as guessing the next access point(s) a mobile terminal will join so as to connect to a (wired or wireless) network. Knowing in advance where a terminal is heading for allows taking proactive measures so as to mitigate the impact of handovers and, hence, improve the network QoS. This thesis analyzes this topic from different points of view. It is divided into three parts. The first part evaluates the feasibility of mobility prediction in a real environment. It thus analyzes a mobility trace captured from a real network to measure the intrinsic entropy of the nodes motion and to measure the effectiveness of a simple prediction method. The second part investigates how to perform mobility prediction. Firstly, it examines a generic prediction scheme based on a simple machine learning method; this scheme is evaluated under various conditions. Secondly, it shows how the pieces of information that are most useful for the prediction algorithm can be obtained. The third part studies how knowing the probable next access point of a mobile terminal allows one to improve the QoS of the network considered. We deal with two situations. We first show how the handover blocking rate of a cellular network can be decreased thanks to resource reservation. We then propose a new routing protocol for delay tolerant networks (i.e. an ad hoc network where packets must be delayed in the absence of an end-to-end path) that assumes that the contacts between the nodes can be (imperfectly) predicted.
4

Le conflit socio-cognitif et l'apprentissage de la conservation des quantités chez les enfants en troubles d'apprentissage de niveau primaire /

Emond, Dominique. January 1989 (has links)
Mémoire (M. Ed.)--Université du Québec à Chicoutimi, 1989. / Document électronique également accessible en format PDF. CaQCU
5

Contributions to Batch Mode Reinforcement Learning

Fonteneau, Raphaël 24 February 2011 (has links)
This dissertation presents various research contributions published during these four years of PhD in the field of batch mode reinforcement learning, which studies optimal control problems for which the only information available on the system dynamics and the reward function is gathered in a set of trajectories. We first focus on deterministic problems in continuous spaces. In such a context, and under some assumptions related to the smoothness of the environment, we propose a new approach for inferring bounds on the performance of control policies. We also derive from these bounds a new inference algorithm for generalizing the information contained in the batch collection of trajectories in a cautious manner. This inference algorithm as itself lead us to propose a min max generalization framework. When working on batch mode reinforcement learning problems, one has also often to consider the problem of generating informative trajectories. This dissertation proposes two different approaches for addressing this problem. The first approach uses the bounds mentioned above to generate data tightening these bounds. The second approach proposes to generate data that are predicted to generate a change in the inferred optimal control policy. While the above mentioned contributions consider a deterministic framework, we also report on two research contributions which consider a stochastic setting. The first one addresses the problem of evaluating the expected return of control policies in the presence of disturbances. The second one proposes a technique for selecting relevant variables in a batch mode reinforcement learning context, in order to compute simplified control policies that are based on smaller sets of state variables.
6

Contributions to Bayesian Network Learning/Contributions à l'apprentissage des réseaux bayesiens

Auvray, Vincent 19 September 2007 (has links)
No description available.
7

Learning in wireless sensor networks for energy-efficient environmental monitoring/Apprentissage dans les réseaux de capteurs pour une surveillance environnementale moins coûteuse en énergie

Le Borgne, Yann-Aël 30 April 2009 (has links)
Wireless sensor networks form an emerging class of computing devices capable of observing the world with an unprecedented resolution, and promise to provide a revolutionary instrument for environmental monitoring. Such a network is composed of a collection of battery-operated wireless sensors, or sensor nodes, each of which is equipped with sensing, processing and wireless communication capabilities. Thanks to advances in microelectronics and wireless technologies, wireless sensors are small in size, and can be deployed at low cost over different kinds of environments in order to monitor both over space and time the variations of physical quantities such as temperature, humidity, light, or sound. In environmental monitoring studies, many applications are expected to run unattended for months or years. Sensor nodes are however constrained by limited resources, particularly in terms of energy. Since communication is one order of magnitude more energy-consuming than processing, the design of data collection schemes that limit the amount of transmitted data is therefore recognized as a central issue for wireless sensor networks. An efficient way to address this challenge is to approximate, by means of mathematical models, the evolution of the measurements taken by sensors over space and/or time. Indeed, whenever a mathematical model may be used in place of the true measurements, significant gains in communications may be obtained by only transmitting the parameters of the model instead of the set of real measurements. Since in most cases there is little or no a priori information about the variations taken by sensor measurements, the models must be identified in an automated manner. This calls for the use of machine learning techniques, which allow to model the variations of future measurements on the basis of past measurements. This thesis brings two main contributions to the use of learning techniques in a sensor network. First, we propose an approach which combines time series prediction and model selection for reducing the amount of communication. The rationale of this approach, called adaptive model selection, is to let the sensors determine in an automated manner a prediction model that does not only fits their measurements, but that also reduces the amount of transmitted data. The second main contribution is the design of a distributed approach for modeling sensed data, based on the principal component analysis (PCA). The proposed method allows to transform along a routing tree the measurements taken in such a way that (i) most of the variability in the measurements is retained, and (ii) the network load sustained by sensor nodes is reduced and more evenly distributed, which in turn extends the overall network lifetime. The framework can be seen as a truly distributed approach for the principal component analysis, and finds applications not only for approximated data collection tasks, but also for event detection or recognition tasks. / Les réseaux de capteurs sans fil forment une nouvelle famille de systèmes informatiques permettant d'observer le monde avec une résolution sans précédent. En particulier, ces systèmes promettent de révolutionner le domaine de l'étude environnementale. Un tel réseau est composé d'un ensemble de capteurs sans fil, ou unités sensorielles, capables de collecter, traiter, et transmettre de l'information. Grâce aux avancées dans les domaines de la microélectronique et des technologies sans fil, ces systèmes sont à la fois peu volumineux et peu coûteux. Ceci permet leurs deploiements dans différents types d'environnements, afin d'observer l'évolution dans le temps et l'espace de quantités physiques telles que la température, l'humidité, la lumière ou le son. Dans le domaine de l'étude environnementale, les systèmes de prise de mesures doivent souvent fonctionner de manière autonome pendant plusieurs mois ou plusieurs années. Les capteurs sans fil ont cependant des ressources limitées, particulièrement en terme d'énergie. Les communications radios étant d'un ordre de grandeur plus coûteuses en énergie que l'utilisation du processeur, la conception de méthodes de collecte de données limitant la transmission de données est devenue l'un des principaux défis soulevés par cette technologie. Ce défi peut être abordé de manière efficace par l'utilisation de modèles mathématiques modélisant l'évolution spatiotemporelle des mesures prises par les capteurs. En effet, si un tel modèle peut être utilisé à la place des mesures, d'importants gains en communications peuvent être obtenus en utilisant les paramètres du modèle comme substitut des mesures. Cependant, dans la majorité des cas, peu ou aucune information sur la nature des mesures prises par les capteurs ne sont disponibles, et donc aucun modèle ne peut être a priori défini. Dans ces cas, les techniques issues du domaine de l'apprentissage machine sont particulièrement appropriées. Ces techniques ont pour but de créer ces modèles de façon autonome, en anticipant les mesures à venir sur la base des mesures passées. Dans cette thèse, deux contributions sont principalement apportées permettant l'applica-tion de techniques d'apprentissage machine dans le domaine des réseaux de capteurs sans fil. Premièrement, nous proposons une approche qui combine la prédiction de série temporelle avec la sélection de modèles afin de réduire la communication. La logique de cette approche, appelée sélection de modèle adaptive, est de permettre aux unités sensorielles de determiner de manière autonome un modèle de prédiction qui anticipe correctement leurs mesures, tout en réduisant l'utilisation de leur radio. Deuxièmement, nous avons conçu une méthode permettant de modéliser de façon distribuée les mesures collectées, qui se base sur l'analyse en composantes principales (ACP). La méthode permet de transformer les mesures le long d'un arbre de routage, de façon à ce que (i) la majeure partie des variations dans les mesures des capteurs soient conservées, et (ii) la charge réseau soit réduite et mieux distribuée, ce qui permet d'augmenter également la durée de vie du réseau. L'approche proposée permet de véritablement distribuer l'ACP, et peut être utilisée pour des applications impliquant la collecte de données, mais également pour la détection ou la classification d'événements.
8

Learning in wireless sensor networks for energy-efficient environmental monitoring / Apprentissage dans les réseaux de capteurs pour une surveillance environnementale moins coûteuse en énergie

Le Borgne, Yann-Aël 30 April 2009 (has links)
Wireless sensor networks form an emerging class of computing devices capable of observing the world with an unprecedented resolution, and promise to provide a revolutionary instrument for environmental monitoring. Such a network is composed of a collection of battery-operated wireless sensors, or sensor nodes, each of which is equipped with sensing, processing and wireless communication capabilities. Thanks to advances in microelectronics and wireless technologies, wireless sensors are small in size, and can be deployed at low cost over different kinds of environments in order to monitor both over space and time the variations of physical quantities such as temperature, humidity, light, or sound. <p><p>In environmental monitoring studies, many applications are expected to run unattended for months or years. Sensor nodes are however constrained by limited resources, particularly in terms of energy. Since communication is one order of magnitude more energy-consuming than processing, the design of data collection schemes that limit the amount of transmitted data is therefore recognized as a central issue for wireless sensor networks.<p><p>An efficient way to address this challenge is to approximate, by means of mathematical models, the evolution of the measurements taken by sensors over space and/or time. Indeed, whenever a mathematical model may be used in place of the true measurements, significant gains in communications may be obtained by only transmitting the parameters of the model instead of the set of real measurements. Since in most cases there is little or no a priori information about the variations taken by sensor measurements, the models must be identified in an automated manner. This calls for the use of machine learning techniques, which allow to model the variations of future measurements on the basis of past measurements.<p><p>This thesis brings two main contributions to the use of learning techniques in a sensor network. First, we propose an approach which combines time series prediction and model selection for reducing the amount of communication. The rationale of this approach, called adaptive model selection, is to let the sensors determine in an automated manner a prediction model that does not only fits their measurements, but that also reduces the amount of transmitted data. <p><p>The second main contribution is the design of a distributed approach for modeling sensed data, based on the principal component analysis (PCA). The proposed method allows to transform along a routing tree the measurements taken in such a way that (i) most of the variability in the measurements is retained, and (ii) the network load sustained by sensor nodes is reduced and more evenly distributed, which in turn extends the overall network lifetime. The framework can be seen as a truly distributed approach for the principal component analysis, and finds applications not only for approximated data collection tasks, but also for event detection or recognition tasks. <p><p>/<p><p>Les réseaux de capteurs sans fil forment une nouvelle famille de systèmes informatiques permettant d'observer le monde avec une résolution sans précédent. En particulier, ces systèmes promettent de révolutionner le domaine de l'étude environnementale. Un tel réseau est composé d'un ensemble de capteurs sans fil, ou unités sensorielles, capables de collecter, traiter, et transmettre de l'information. Grâce aux avancées dans les domaines de la microélectronique et des technologies sans fil, ces systèmes sont à la fois peu volumineux et peu coûteux. Ceci permet leurs deploiements dans différents types d'environnements, afin d'observer l'évolution dans le temps et l'espace de quantités physiques telles que la température, l'humidité, la lumière ou le son.<p><p>Dans le domaine de l'étude environnementale, les systèmes de prise de mesures doivent souvent fonctionner de manière autonome pendant plusieurs mois ou plusieurs années. Les capteurs sans fil ont cependant des ressources limitées, particulièrement en terme d'énergie. Les communications radios étant d'un ordre de grandeur plus coûteuses en énergie que l'utilisation du processeur, la conception de méthodes de collecte de données limitant la transmission de données est devenue l'un des principaux défis soulevés par cette technologie. <p><p>Ce défi peut être abordé de manière efficace par l'utilisation de modèles mathématiques modélisant l'évolution spatiotemporelle des mesures prises par les capteurs. En effet, si un tel modèle peut être utilisé à la place des mesures, d'importants gains en communications peuvent être obtenus en utilisant les paramètres du modèle comme substitut des mesures. Cependant, dans la majorité des cas, peu ou aucune information sur la nature des mesures prises par les capteurs ne sont disponibles, et donc aucun modèle ne peut être a priori défini. Dans ces cas, les techniques issues du domaine de l'apprentissage machine sont particulièrement appropriées. Ces techniques ont pour but de créer ces modèles de façon autonome, en anticipant les mesures à venir sur la base des mesures passées. <p><p>Dans cette thèse, deux contributions sont principalement apportées permettant l'applica-tion de techniques d'apprentissage machine dans le domaine des réseaux de capteurs sans fil. Premièrement, nous proposons une approche qui combine la prédiction de série temporelle avec la sélection de modèles afin de réduire la communication. La logique de cette approche, appelée sélection de modèle adaptive, est de permettre aux unités sensorielles de determiner de manière autonome un modèle de prédiction qui anticipe correctement leurs mesures, tout en réduisant l'utilisation de leur radio.<p><p>Deuxièmement, nous avons conçu une méthode permettant de modéliser de façon distribuée les mesures collectées, qui se base sur l'analyse en composantes principales (ACP). La méthode permet de transformer les mesures le long d'un arbre de routage, de façon à ce que (i) la majeure partie des variations dans les mesures des capteurs soient conservées, et (ii) la charge réseau soit réduite et mieux distribuée, ce qui permet d'augmenter également la durée de vie du réseau. L'approche proposée permet de véritablement distribuer l'ACP, et peut être utilisée pour des applications impliquant la collecte de données, mais également pour la détection ou la classification d'événements. <p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.1125 seconds