• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relationship of Mental Ability Levels to Reversal of Learning Sets by the Retarded

McDaniel, Willard Vearl 06 1900 (has links)
Using postulations formulated by Harlow, very few investigators have experimented with discriminative learning in relation to various levels of human mental abilities to the pattern of forming a set. The present study was designed to investigate the effects of different levels of mental abilities on the formation of these sets, using mental retardates, and analyzing the formation of these sets and the abilities of these retardates to shift dimension of cues by reversing the response conditions.
2

The Formation of Learning Sets on Thee Discrimination Problems by Five- to Six-Year-Olds

Ahlers, Shirley Mae, 1931- 01 1900 (has links)
The problem was to determine the levels of intellectual capacity necessary at various ages for acquiring rapid and efficient nonspatial discrimination learning sets on problems of increasing complexity.
3

Learning Level Sets and Level Learning Sets: innovations in variational methods for data partitioning

Cai, Xiongcai, Computer Science & Engineering, Faculty of Engineering, UNSW January 2008 (has links)
This dissertation proposes a novel theoretical framework for the data partitioning problem in computer vision and machine learning. The framework is based on level set methods that are derived from variational calculus and involve a curve-based objective function which integrates both boundary and region based information in a generic form. The proposed approaches within the framework provide original solutions to two important problems in variational methods, namely parameter tuning and information fusion, collectively termed Learning Level Sets in this thesis. Moreover, a novel pattern classification algorithm, namely Level Learning Sets, is proposed to classify any general dataset, including sparse and non sparse data. It is based on the same optimisation process of the objective function directly related to the curve propagation theory used in level set theory. The proposed approach learns the knowledge required for parameter tuning and information fusion in level set methods using machine learning techniques. It uses acquired knowledge to automatically perform parameter tuning and information fusion in level set methods. In the case of pattern classification, variational methods using level set theory optimise decision boundary construction in feature space. Consequently, the optimised values of the objective level set function over the feature space represent the model for pattern classification. The proposed automatic parameter tuning and information fusion method embedded in the level set method framework has been employed to provide original solutions to image segmentation and object extraction in computer vision. On the other hand, the Level Learning Set has been extended and applied to a variety of pattern classification problems". Several experimental results for each of the above methods are provided, demonstrating the effectiveness of the proposed solutions and indicating the potential of the automatic and dynamic tuning and fusion approaches as well as the Level Learning Set model.

Page generated in 0.0647 seconds