• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Attitude and Trajectory Estimation for Small Suborbital Payloads

Yuan, Yunxia January 2017 (has links)
Sounding rockets and small suborbital payloads provide a means for research in situ of the atmosphere and ionosphere. The trajectory and the attitude of the payload are critical for the evaluation of the scientific measurements and experiments. The trajectory refers the location of the measurement, while the attitude determines the orientation of the sensors. This thesis covers methods of trajectory and attitude reconstruction implemented in several experiments with small suborbital payloads carried out by the Department of Space and Plasma Physics in 2012--2016. The problem of trajectory reconstruction based on raw GPS data was studied for small suborbital payloads. It was formulated as a global least squares optimization problem. The method was applied to flight data of two suborbital payloads of the RAIN REXUS experiment. Positions and velocities were obtained with high accuracy. Based on the trajectory reconstruction technique, atmospheric densities, temperatures, and horizontal wind speeds below 80 km were obtained using rigid free falling spheres of the LEEWAVES experiment. Comparison with independent data indicates that the results are reliable for densities below 70 km, temperatures below 50 km, and wind speeds below 45 km. Attitude reconstruction of suborbital payloads from yaw-pitch-roll Euler angles was studied. The Euler angles were established by two methods: a global optimization method and an Unscented Kalman Filter (UKF) technique. The comparison of the results shows that the global optimization method provides a more accurate fit to the observations than the UKF. Improving the results of the falling sphere experiments requires understanding of the attitude motion of the sphere. An analytical consideration was developed for a free falling and axisymmetric sphere under aerodynamic torques. The motion can generally be defined as a superposition of precession and nutation. These motion phenomena were modeled numerically and compared to flight data. / <p>QC 20170510</p>
2

Robust Optimization for Simultaneous Localization and Mapping / Robuste Optimierung für simultane Lokalisierung und Kartierung

Sünderhauf, Niko 25 April 2012 (has links) (PDF)
SLAM (Simultaneous Localization And Mapping) has been a very active and almost ubiquitous problem in the field of mobile and autonomous robotics for over two decades. For many years, filter-based methods have dominated the SLAM literature, but a change of paradigms could be observed recently. Current state of the art solutions of the SLAM problem are based on efficient sparse least squares optimization techniques. However, it is commonly known that least squares methods are by default not robust against outliers. In SLAM, such outliers arise mostly from data association errors like false positive loop closures. Since the optimizers in current SLAM systems are not robust against outliers, they have to rely heavily on certain preprocessing steps to prevent or reject all data association errors. Especially false positive loop closures will lead to catastrophically wrong solutions with current solvers. The problem is commonly accepted in the literature, but no concise solution has been proposed so far. The main focus of this work is to develop a novel formulation of the optimization-based SLAM problem that is robust against such outliers. The developed approach allows the back-end part of the SLAM system to change parts of the topological structure of the problem\'s factor graph representation during the optimization process. The back-end can thereby discard individual constraints and converge towards correct solutions even in the presence of many false positive loop closures. This largely increases the overall robustness of the SLAM system and closes a gap between the sensor-driven front-end and the back-end optimizers. The approach is evaluated on both large scale synthetic and real-world datasets. This work furthermore shows that the developed approach is versatile and can be applied beyond SLAM, in other domains where least squares optimization problems are solved and outliers have to be expected. This is successfully demonstrated in the domain of GPS-based vehicle localization in urban areas where multipath satellite observations often impede high-precision position estimates.
3

Robust Optimization for Simultaneous Localization and Mapping

Sünderhauf, Niko 19 April 2012 (has links)
SLAM (Simultaneous Localization And Mapping) has been a very active and almost ubiquitous problem in the field of mobile and autonomous robotics for over two decades. For many years, filter-based methods have dominated the SLAM literature, but a change of paradigms could be observed recently. Current state of the art solutions of the SLAM problem are based on efficient sparse least squares optimization techniques. However, it is commonly known that least squares methods are by default not robust against outliers. In SLAM, such outliers arise mostly from data association errors like false positive loop closures. Since the optimizers in current SLAM systems are not robust against outliers, they have to rely heavily on certain preprocessing steps to prevent or reject all data association errors. Especially false positive loop closures will lead to catastrophically wrong solutions with current solvers. The problem is commonly accepted in the literature, but no concise solution has been proposed so far. The main focus of this work is to develop a novel formulation of the optimization-based SLAM problem that is robust against such outliers. The developed approach allows the back-end part of the SLAM system to change parts of the topological structure of the problem\'s factor graph representation during the optimization process. The back-end can thereby discard individual constraints and converge towards correct solutions even in the presence of many false positive loop closures. This largely increases the overall robustness of the SLAM system and closes a gap between the sensor-driven front-end and the back-end optimizers. The approach is evaluated on both large scale synthetic and real-world datasets. This work furthermore shows that the developed approach is versatile and can be applied beyond SLAM, in other domains where least squares optimization problems are solved and outliers have to be expected. This is successfully demonstrated in the domain of GPS-based vehicle localization in urban areas where multipath satellite observations often impede high-precision position estimates.

Page generated in 0.0977 seconds