Spelling suggestions: "subject:"ueber"" "subject:"weber""
11 |
Strukturelle und molekulare Charakterisierung des Asialoglykoprotein-Rezeptors aus humaner LeberSchreiter, Thomas. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Mainz.
|
12 |
Identification of target proteins of furan reactive metabolites in rat liver / Identifizierung von Zielproteinen reaktiver Furan-Metabolite in RattenleberMoro, Sabrina January 2011 (has links) (PDF)
Furan was recently found to be present in a variety of food items that undergo heat treatment. It is known to act as a potent hepatotoxin and liver carcinogen in rodents. In a 2-year bioassay, chronic furan administration to rats was shown to cause hepatocellular adenomas and carcinomas and very high incidences of cholangiocarcinomas even at the lowest furan dose tested (2.0 mg/kg bw). However, the mechanisms of furan-induced tumor formation are poorly understood. Furan is metabolized by cytochrome P450 (CYP) enzymes, predominantly CYP2E1, to its major metabolite cis-2-butene-1,4-dial (BDA). BDA is thought to be the key mediator of furan toxicity and carcinogenicity and was shown to react with cellular nucleophiles such as nucleosides and amino acid residues in vitro. It is well known that covalent protein binding may lead to cytotoxicity, but the cellular mechanisms involved remain to be elucidated. Since covalent binding of reactive intermediates to a target protein may result in loss of protein function and subsequent damage to the cell, the aim of this study was to identify furan target proteins to establish their role in the pathogenesis of furan-associated liver toxicity and carcinogenicity. In order to identify target proteins of furan reactive metabolites, male F344/N rats were administered [3,4-14C]-furan. Liquid scintillation counting of protein extracts revealed a dose-dependent increase of radioactivity covalently bound to liver proteins. After separation of the liver protein extracts by two-dimensional gel electrophoresis and subsequent detection of radioactive spots by fluorography, target proteins of reactive furan intermediates were identified by mass spectrometry and database search via Mascot. A total of 61 putative target proteins were consistently found to be adducted in 3 furan-treated rats. The identified proteins represent - among others - enzymes, transport proteins, structural proteins and chaperones. Pathway mapping tools revealed that target proteins are predominantly located in the cytosol and mitochondria and participate in glucose metabolism, mitochondrial β-oxidation of fatty acids, and amino acid degradation. These findings together with the fact that ATP synthase β subunit was also identified as a putative target protein strongly suggest that binding of furan reactive metabolites to proteins may result in mitochondrial injury, impaired cellular energy production, and altered redox state, which may contribute to cell death. Moreover, several proteins involved in the regulation of redox homeostasis represent putative furan target proteins. Loss of function of these proteins by covalent binding of furan reactive metabolites may impair cellular defense mechanisms against oxidative stress, which may also result in cell death. Besides the potential malfunction of whole pathways due to loss of functions of several participating proteins, loss of function of individual proteins which are involved in various cellular processes such as transport processes across the mitochondrial membranes, cell signaling, DNA methylation, blood coagulation, and bile acid transport may also contribute to furan-induced cytotoxicity and carcinogenicity. Covalent binding of reactive metabolites to cellular proteins may result in accumulation of high amounts of unfolded or damaged proteins in the endoplasmic reticulum (ER). In response to this ER stress, the cell can activate the unfolded protein response (UPR) to repair or degrade damaged proteins. To address whether binding of furan reactive metabolites to cellular proteins triggers activation of the UPR, semiquantitative PCR and TaqMan® real-time PCR were performed. In the case of UPR activation, semiquantitative PCR should show enhanced splicing of X-box binding protein-1 (XBP1) mRNA (transcription factor and key regulator of the UPR) and TaqMan® real-time PCR should determine an increased expression of UPR target genes. However, our data showed no evidence for activation of the UPR in the livers of rats treated either with a single hepatotoxic dose or with a known carcinogenic dose for 4 weeks. This suggests either that furan administration does not induce ER stress through accumulation of damaged proteins or that activation of the UPR is disrupted. Consistent with the latter, glucose-regulated protein 78 (GRP78), identified as a target protein in our study, represents an important mediator involved in activation of the UPR whose inhibition was shown to impair induction of the UPR. Thus, adduct formation and inactivation of GRP78 by furan metabolites may disturb activation of the UPR. In addition to impaired activation of UPR, protein repair and degradation functions may be altered, because several proteins involved in these processes also represent target proteins of furan and thus may show impaired functionality. Taken together... / Im Rahmen von Untersuchungen der U.S. Food and Drug Administration (FDA) wurde im Jahr 2004 bekannt, dass Furan in verschiedensten hitzebehandelten Lebensmitteln vorkommt. Durch Tierstudien des National Toxicology Programs (NTP) aus den 90er Jahren wusste man bereits, dass Furan hepatotoxische und leberkanzerogene Wirkungen in Nagern verursacht. In diesen Studien wurden nach chronischer Verabreichung von Furan an Ratten über einen Zeitraum von 2 Jahren bereits bei der niedrigsten getesteten Dosis von 2 mg/kg Körpergewicht hepatozelluläre Adenome und Karzinome sowie sehr hohe Inzidenzen von Cholangiokarzinomen beobachtet. Die Mechanismen, die der Tumorentstehung durch Furan zugrunde liegen, sind jedoch bis heute nicht ausreichend untersucht. Furan wird durch Enzyme der Cytochrom P450 (CYP) Familie, vor allem durch CYP2E1, zu seinem Hauptmetaboliten cis-2-Buten-1,4-dial (BDA) verstoffwechselt. Der reaktive Furan-Metabolit BDA kann in vitro mit zellulären Nukleophilen wie Nukleosiden und Aminosäureresten reagieren. Verschiedene Untersuchungen weisen darauf hin, dass die toxischen und kanzerogenen Effekte von Furan hauptsächlich durch BDA vermittelt werden. Es ist seit langem bekannt, dass kovalente Bindung an Proteine zu Zytotoxizität führen kann. Der zugrunde liegende Mechanismus ist bislang noch ungeklärt. Es wird jedoch vermutet, dass die kovalente Bindung von reaktiven Metaboliten an Proteine zu deren Funktionsverlust führt, was wiederum fatale Konsequenzen für die Zellen haben kann. Eine Identifizierung der Zielproteine von Furan, d.h. jener Proteine an denen eine Adduktbildung durch reaktive Metabolite von Furan erfolgt, könnte daher Aufschluss über deren mögliche Rolle in der Pathogenese der durch Furan induzierten Lebertoxizität und -kanzerogenität geben. Um die Zielproteine reaktiver Furan-Metabolite zu identifizieren, wurde [3,4-14C]-Furan an männliche F344/N Ratten verabreicht. Durch Flüssigkeitsszintillationszählung der Proteinextrakte wurde ein dosisabhängiger Anstieg der kovalent an Leberproteine gebundenen Radioaktivität ermittelt. Nach der Auftrennung der Leberproteinextrakte durch zweidimensionale Gelelektrophorese und der Detektion der radioaktiven Spots durch Fluorographie wurden die Zielproteine reaktiver Furan-Metabolite durch Massenspektrometrie und Datenbanksuche (Mascot-Datenbank) identifiziert. In 3 Ratten, die mit Furan behandelt worden waren, wurden übereinstimmend 61 mögliche Zielproteine von Furan identifiziert. Unter diesen Zielproteinen waren unter anderem Enzyme, Transportproteine, Strukturproteine und Chaperones vertreten. Die Zuordnung der identifizierten Proteine zu zellulären Signal- und Stoffwechselwegen mittels spezieller Software zeigte, dass die Zielproteine hauptsächlich aus dem Zytosol und den Mitochondrien stammen und an Glucosemetabolismus, mitochondrieller β-Oxidation von Fettsäuren und dem Abbau von Aminosäuren beteiligt sind. Außerdem wurde auch die β-Untereinheit der ATP-Synthase als mögliches Zielprotein identifiziert. Diese Ergebnisse weisen stark darauf hin, dass die Bindung reaktiver Furan-Metabolite an Proteine zur Schädigung der Mitochondrien, Beeinträchtigung der zellulären Energieproduktion und verändertem Redox-Status führen und damit zum Zelltod beitragen könnte. Weiterhin befanden sich unter den möglichen Zielproteinen auch Proteine, die für die Regulation der Redox-Homöostase in der Zelle verantwortlich sind. Ein Funktionsverlust dieser Proteine durch die kovalente Bindung reaktiver Furan-Metabolite könnte eine verminderte Fähigkeit der Zelle oxidativen Stress abzuwehren zur Folge haben, was wiederum zum Zelltod führen könnte. Zusätzlich dazu, dass die kovalente Modifikation mehrerer Proteine aus dem gleichen Stoffwechselweg dessen Gesamtfunktion beeinträchtigen kann, ist es außerdem möglich, dass Adduktbildung an einzelnen Proteinen mit Schlüsselfunktionen in der Aufrechterhaltung der Zellhomöostase toxische Effekte auslösen kann. Ein Funktionsverlust dieser Proteine, die z.B. in Transportprozesse durch Mitochondrienmembranen, zelluläre Signalwege, DNA-Methylierung, Blutgerinnung und Gallensäuren-Transport involviert sind, könnte ebenfalls an den zytotoxischen und kanzerogenen Wirkungen von Furan beteiligt sein. Die kovalente Bindung reaktiver Furan-Metabolite an zelluläre Proteine kann zu einer Akkumulation großer Mengen an ungefalteten oder beschädigten Proteinen im endoplasmatischen Retikulum (ER) führen. Als Antwort auf diesen sogenannten ER-Stress kann die Zelle den Unfolded Protein Response (UPR) aktivieren, einen zellulären Signalweg um vermehrt beschädigte Proteine zu reparieren oder abzubauen. Um festzustellen, ob die Bindung reaktiver Furan-Metabolite an zelluläre Proteine eine Aktivierung des UPR auslöst, wurden semiquantitative PCR und Real-Time-PCR Analysen durchgeführt. Nach einer Aktivierung des UPR sollte...
|
13 |
New approaches to improve prediction of drug-induced liver injury / Neue Ansätze zur verbesserten Vorhersage arzneimittelinduzierter LeberschädenAdler, Melanie January 2012 (has links) (PDF)
Das häufige Scheitern neuer Arzneistoffkandidaten aufgrund von Lebertoxizität in präklinischen und klinischen Studien stellt ein erhebliches Problem in der Entwicklung von neuen Arzneimitteln dar. Deshalb ist es wichtig, neue Ansätze zu entwickeln, mit deren Hilfe unerwünschte Wirkungen von Arzneimitteln früher und zuverlässiger erkannt werden können. Um die Vorhersage von Lebertoxizität in präklinischen Studien zu verbessern, wurden im Rahmen dieser Arbeit zwei wesentliche Ansätze gewählt: 1) die Evaluierung neuer Biomarker, durch die Lebertoxizität zuverlässiger und empfindlicher detektiert werden könnte und 2.) wirkmechanistische Untersuchungen mittels Toxcicogenomics für ein besseres Verständnis der zugrunde liegenden Mechanismen der Arzneimittel-induzierten Toxizität. Ein Ziel dieser Arbeit war, die Fähigkeit einiger neuer potenzieller Biomarker (NGAL, Thiostatin, Clusterin und PON1) zu bewerten, Arzmeimittel-induzierte Lebertoxizität in Ratten frühzeitig zu erkennen. Die Ergebnisse zeigen, dass PON1 und Clusterin infolge eines durch die verabreichten Arzneistoffkandidaten verursachten Leberschadens nicht konsistent verändert waren. Diese beiden Marker sind daher, verglichen mit bestehenden klinisch-chemischen Markern, nicht für eine sichere Vorhersage von Arzneistoff-induzierten Leberschäden geeignet. Bei Thiostatin und NGAL zeigte sich hingegen ein zeit- und dosisabhängiger Anstieg im Serum und Urin behandelter Tiere. Diese Veränderungen, die gut mit der mRNA Expression im Zielorgan übereinstimmten, korrelierten mit dem Schweregrad der Arzneistoff-induzierten Leberschäden. Die Analyse mittels ROC zeigte, Thiostatin im Serum, nicht aber NGAL, ein besserer Indikator für Arzneimittel-induzierte hepatobiliäre Schäden ist als die routinemäßig verwendeten klinische-chemischen Marker, wie z.B. die Leberenzyme ALP, ALT und AST. Thiostatin wird jedoch als Akute-Phase-Protein in einer Vielzahl von Geweben exprimiert und kann somit nicht spezifisch als Lebermarker betrachtet werden. Dennoch zeigen unsere Ergebnisse, dass Thiostatin als sensitiver, minimal-invasiver diagnostischer Marker für Entzündungsprozesse und Gewebeschäden eine sinnvolle Ergänzung in der präklinischen Testung auf Lebertoxizität darstellt. Im zweiten Teil dieser Arbeit wurde mittels RNA-Interferenz das pharmakologische Target des Arzneistoffkandidaten BAY16, der Glukagonrezeptor, auf mRNA-Ebene gehemmt und anhand von Genexpressionsanalysen untersucht, ob die pharmakologisch-bedingte Modulation des Glukagonrezeptors eine Rolle in der Toxizität von BAY16 spielt. Desweiteren sollten diese Arbeiten Aufschluss geben, welche molekularen Veränderungen auf die pharmakologische Wirkung des Arzneistoffs zurückzuführen sind, und daher für den Mechanismus der Toxizität möglicherweise wenig relevant sind. Während BAY16 in Konzentrationen von 75 µM starke zytotoxische Wirkungen aufwies, hatte die siRNA vermittelte Depletion des Glukagonrezeptors keinen Einfluss auf die Vitalität primärer Rattenhepatozyten. Daraus lässt sich ableiten, dass die Hepatotoxiziät von BAY16 in vitro und in vivo nicht mit der pharmakologischen Modulation des Glukagonrezeptors assoziiert ist. Diese Ergebnisse wurden durch die Tatsache gestützt, dass die meisten der durch BAY16 induzierten Genexpressionsveränderungen unabhängig von der pharmakologischen Modulation des Glucagonrezeptors auftraten. Diese beobachteten off-target-Effekte beinhalteten Veränderungen im Fremdstoffmetabolismus, oxidativer Stress, erhöhte Fettsäuresynthese und Veränderungen im Cholesterol- und Gallensäuremetabolismus. Obwohl Veränderungen in diesen molekularen Mechanismen zum Fortschreiten eines Leberschadens beitragen können, ist es anhand dieser Daten nicht möglich einen eindeutigen Mechanismus für die Toxizität von BAY16 abzuleiten. In dieser Arbeit konnte jedoch gezeigt werden, dass die Anwendung der siRNA-Technologie einen neuen methodischen Ansatz darstellt, um Mechanismen arzneimittelbedingter Toxizität besser verstehen zu können. / The high failure rate of new drug candidates in preclinical or clinical studies due to hepatotoxicity represents a considerable problem in the drug development. Hence, there is an urgent need to develop new approaches for early and reliable prediction of drug-induced hepatotoxicity that enables a better identification of drug candidates with high potential for toxicity at early stages of drug development. Therefore, the aim of this work was to improve the prediction of drug-induced liver injury in preclinical studies through evaluation of more reliable and sensitive biomarkers of hepatotoxicity and a better understanding of the underlying mechanistic basis for drug-induced toxicity. First, the ability of a set of potential markers (NGAL, thiostatin, clusterin, PON1) to detect early signs of liver injury was assessed in rats treated with drug candidates that were dropped from further development, in part due to toxic adverse effects in the liver. In summary, PON1 and clusterin were not consistently altered in response to liver injury and thus provide no additive information to the traditional liver enzymes in detecting drug-induced hepatotoxicity. In contrast, thiostatin and NGAL were increased in serum and urine of treated animals in a time- and dose-dependent manner. These changes correlated well with mRNA expression in the target organ and generally reflected the onset and degree of drug-induced liver injury. Receiver-operating characteristics analyses supported serum thiostatin, but not NGAL, as a better indicator of drug-induced hepatobiliary injury than conventional clinical chemistry parameters, such as ALP, ALT and AST. Although thiostatin, an acute phase protein expressed in a range of tissues, may not be specific for liver injury, our results indicate that thiostatin may serve as a sensitive, minimally-invasive diagnostic marker of inflammation and tissue damage in preclinical safety assessment. In the second part of this work, combined application of genomics profiling technology and RNAi to inhibit the pharmacological target of a drug candidate BAY16, a glucagon receptor (GCGR) antagonist, was used to determine if interference with the pharmacological target plays a role in the toxic response to BAY16, and to narrow down those molecular changes that are associated with toxicity, and not the pharmacological action of BAY16. In contrast to Bay 16, which was found to be cytotoxic at concentrations of 75 µM, silencing of the glucagon receptor did not affect cell viability in primary rat hepatocytes. Thus, it can be concluded that hepatotoxicity of Bay 16 was not related to the drugs inhibitory effect on the glucagon receptor in vitro and in vivo. These findings were supported by the fact that most of BAY16-induced changes in gene expression occurred independently of the pharmacological modulation of GCGR. These off-target effects include altered xenobiotic metabolism, oxidative stress, increased fatty acid synthesis, and alterations in cholesterol and bile acid metabolic processes. Although it was not possible to draw a final conclusion about the mechanism of BAY16 hepatotoxicity, changes in these molecular mechanisms appear contribute to progression of hepatic injury. With regard to drug safety assessment in preclinical studies, the utilization of siRNA technology in vitro represents a new approach to improve mechanistic understanding of the nature of drug’s toxicity, being either chemically mediated or due to primary or secondary pharmacological mode of action.
|
14 |
Auswirkungen verschiedener Volumensubstitutionslösungen auf die Integrität der Leber in der CLP-induzierten Sepsis der Ratte / Influence of different volume replacement solutions on liver function in cecal ligation and puncture induced septic rodentsStüber, Tanja Nadine January 2012 (has links) (PDF)
Es handelt sich um eine experimentelle Arbeit zur Untersuchung der Auswirkungen verschiedener Volumensubstitutionslösungen auf die Integrität der Leber in der CLP-induzierten Sepsis der Ratte. 40 Ratten wurden in 5 Grp. eingeteilt, anästhesiert und median laparotomiert. Während das Coecum der Sham-Tiere im ursprünglichen Zustand verblieb, erhielten alle anderen Tiere eine CLP. Die Tiere wurden im Anschluss entpsprechend ihrer Gruppe entweder nur mit dem Grundbedarf an NaCl (Sham) oder mit dem Grundbedarf an NaCl und dem jeweiligen Substitutionsmittel NaCl , SteroIso, Gelafundin, 6%HES 130/0,4 infundiert. Der Versuch lief über 24 h. Danach wurde die Tiere reanästhesiert, laparotomiert und eine in-vivo-Mikroskopie der Leber durchgeführt. Im Anschluss wurden sowohl hämodynamische Werte, Serumparameter und Zytokinwerte als auch histopathologische Daten ermittelt. / Sepsis was induced by cecal ligation and puncture in 40 male rats. All animals were treated with different crystalloids (NaCl 0.9%, Ringer's acetate) or colloids (Gelafundin 4%, 6% HES 130/0.4). 24 h hours after CLP the animals were re-anesthetized and liver microcirculation was performed. Haemodynamic parameters as well as serological and histopathologic examinations were done.
|
15 |
Untersuchungen zur Morphinbiosynthese in der Ratte Rattus rattus L. und im Schlafmohn Papaver somniferum L. /Fisinger, Ursula. January 1998 (has links) (PDF)
Univ., Diss.--München, 1998.
|
16 |
Etablierung einer biologischen vaskularisierten Matrix als Grundlage für ein in vitro Lebertestsystem Establishment of a biological vascularized scaffold as a basis for in vitro liver test system /Schanz, Johanna E., January 2007 (has links)
Stuttgart, Univ., Diss., 2007.
|
17 |
Der Einsatz von Rattenleberschnitten als In-vitro-Modell zur Untersuchung der hepatischen Biotransformation /Ufert, Susann. January 2003 (has links)
Thesis (doctoral)--Universiẗat, Jena, 2003.
|
18 |
Untersuchungen über Wechselwirkungen zwischen Proteinen der Leber und dem grossen Hüllprotein des Hepatitis-B-VirusHartmann-Stühler, Cora. January 2001 (has links) (PDF)
Mainz, Univ., Diss., 2001.
|
19 |
Untersuchungen zur Konzentration der Gallensäuren im Blutplasma bei Haustauben (C. livia dom.), Haushühnern (G. gallus dom.), Blaustirnamazonen (A. aestiva), Doppelgelbkopfamazonen (A. ochrocephala oratrix), Gelbbrustaras (A. ararauna), Kongo-Graupapageien (P. erithacus erithacus) und Goffinkakadus (C. goffini)Tillmann, Claudia. Unknown Date (has links) (PDF)
Tierärztl. Hochsch., Diss., 2004--Hannover.
|
20 |
Mechanismen idiosynkratischer Lebertoxizität - Einfluss von Arzneistoff-unabhängigen Stressfaktoren auf die Bildung reaktiver Metaboliten und zellulären Stress / Mechanisms of idiosyncratic hepatotoxicity - Impact of drug independent stress factors on reative metabolite formation and cellular stressRamm, Susanne January 2012 (has links) (PDF)
Idiosynkratische Leberschädigung durch Arzneimittel (z.B. Diclofenac) stellt trotz ihres seltenen Auftretens eine erhebliche Komplikation in der Arzneimittelentwicklung und -therapie dar. Die zu idiosynkratischen Reaktionen führenden, komplexen chemischen und biologischen Abläufe sind noch weitgehend unklar. Inzwischen wird jedoch vermutet, dass die Toxizität eines Arzneimittels durch Arzneistoff-unabhängige Risikofaktoren, wie Krankheiten, Entzündungsreaktionen, Co-Medikation oder Alkohol, erhöht werden kann. Mögliche Mechanismen könnten hierbei eine vermehrte Bildung reaktiver Metaboliten bzw. eine veränderte zelluläre Stress- und Immunantwort sein. Um tiefere Einblicke in die Bedeutung möglicher Arzneistoff-unabhängiger Risikofaktoren zu erhalten, wurde in der vorliegenden Arbeit der Einfluss drei verschiedener Stressfaktoren auf die Toxizität von Diclofenac (Dcl) untersucht. Bei diesen Stressfaktoren handelte es sich um Lipopolysaccharid (LPS) und Poly I:C (PIC) zur Simulation einer bakteriellen bzw. viralen Entzündung sowie um Buthionin-Sulfoximin (BSO) zur Depletion zellulären Glutathions. Zusätzlich wurde getestet, ob eine durch Stressfaktoren ausgelöste Erhöhung der Toxizität von Dcl in Ratten mit Veränderungen in der Biotransformation bzw. mit einer Hochregulation co-stimulatorischer Faktoren (z.B. Zytokine oder Alarmsignale) einhergeht. Die Kombination einer einwöchigen therapeutisch dosierten Dcl-Behandlung mit einer einmaligen LPS-Dosis erzeugte in den Tieren eine ausgeprägte Hepatotoxizität, die mit erhöhten Aktivitäten der Aminotransferasen im Serum einherging. Diese adversen Effekte konnten jedoch nicht durch LPS oder Dcl alleine, bzw. in Kombination mit PIC oder BSO erzeugt werden. Es besteht die Annahme, dass die Bioaktivierung von Diclofenac zu 5-OH-Dcl oder Dcl-Acylglucuronid (AG) sowie die folgende Bildung kovalenter Proteinaddukte zur Entwicklung von Lebertoxizität beiträgt. Mittels LC-MS/MS-Messungen konnten wir jedoch nachweisen, dass die Gabe von LPS + Dcl keine erhöhte Bildung reaktiver Metaboliten oder Dcl-AG-abhängiger Proteinaddukte auslöst. Im Einklang damit wurden Enzyme, die für die Bio-aktivierung von Dcl zu reaktiven Metaboliten verantwortlich sind (z.B. Cyp2C11, Cyp2C7 und UGT2B1), sowie die MRP-Effluxtransporter der Leber durch die Co-Behandlung mit LPS in ihrer Genexpression gehemmt. Zusätzliche qRT-PCR-Analysen Nrf2-abhängiger Gene, als Sensor für elektrophilen oder oxidativen Stress, zeigten keine Hochregulation zytoprotektiver Faktoren und unterstützen die Schlussfolgerung, dass Arzneistoff-unabhängige Stress-faktoren keine erhöhte Bildung toxischer Dcl-Metaboliten auslösen. Schließlich ergaben unsere Analysen, dass eine Aktivierung co-stimulatorischer NFκB- und MAPK-Signalwege mit Hochregulation co-stimulatorischer Faktoren (z.B. IL-1β, TNF-α, CINC-1, iNOS) und Akkumulation neutrophiler Granulozyten in der Leber sowohl durch Behandlung mit LPS + Dcl als auch mit PIC + Dcl induziert wurde. Nur die Kombination von LPS und Diclofenac bewirkte jedoch darüber hinaus eine massive Freisetzung pro-inflammatorischer Zytokine, Chemokine sowie toxizitätsfördernder Alarmsignale (z.B. IL-1β, TNF-α, CINC-1, HMGB1, LTB4) ins Plasma. Zusätzlich waren schützende negative Feed-back-Mechanismen, wie die Hitzeschockreaktion, in den mit LPS und Dcl behandelten Tieren gehemmt. Zusammenfassend zeigen unsere Ergebnisse, dass eine metabolische Aktivierung von Dcl bzw. eine Akkumulation reaktiver Dcl-Metaboliten an der Entwicklung idiosynkratischer Leberschädigung nicht ausschlaggebend beteiligt ist. Im Gegensatz zu PIC oder BSO führte in den verabreichten Dosen nur die Gabe von LPS als Stressfaktor zu einer Aktivierung co-stimulatorischer Signalwege sowie zu einer Hemmung protektiver Systeme, wodurch die leberschädigende Wirkung von Dcl potenziert wurde. / Idiosyncratic drug reactions (IDRs) are rare but major complications of drug therapy and development. A basic understanding of the chemical and biological events leading to IDRs is still lacking. However, it appears that drug-independent risk factors may be critical determinants in the response to an otherwise non-toxic drug. It has been speculated that stress factors like an underlying disease, inflammation, co-medication or alcohol may increase reactive metabolite formation and/or alter cellular stress and immune response. Thus, we were interested to determine the impact of various drug-independent stress factors on the toxicity of diclofenac (Dcl), a model drug associated with rare but significant cases of serious hepatotoxicity. We tested the hypothesis that co-treatment with various drug-independent risk factors may enhance Dcl toxicity. These included lipopolysaccharide (LPS) and poly I:C (PIC) simulating bacterial and viral inflammation, respectively, and buthionine sulfoximine (BSO) as a model for cellular glutathione depletion. Additionally, we were interested to understand if stress factor-induced modulation of Dcl toxicity involves alterations in drug metabolism and/or up-regulation of co-stimulatory molecules thought to constitute “danger signals”. Co-treatment of rats repeatedly given therapeutic doses of Dcl for 7 days with a single dose of LPS resulted in severe liver toxicity accompanied by elevated serum aminotransferase activity. Neither LPS nor diclofenac alone or in combination with PIC or BSO had such an effect. It is thought that bioactivation to reactive 5-OH-Dcl or Dcl acyl glucuronides (AG) with subsequent protein adduct formation contribute to Dcl induced liver injury. However, LC-MS/MS analyses did not reveal increased formation of reactive metabolites or Dcl-AG-dependent protein adducts in animals treated with LPS + Dcl. Consistent with this, co-treatment with LPS induced down-regulation of enzymes responsible for Dcl bioactivation to reactive metabolites (e.g. Cyp2C11, Cyp2C7 and UGT2B1), as well as liver MRP efflux transporters. Furthermore, qRT-PCR analyses of Nrf2-dependent genes, as a sensor of electrophilic or oxidative stress, showed no up-regulation of cytoprotective factors, supporting the conclusion that drug-independent stress factors do not enhance formation of toxic Dcl metabolites. Hepatic gene expression analyses revealed activation of NFκB and MAPK pathways with up-regulation of co-stimulatory molecules (IL-1β, TNF-α, CINC-1, iNOS) and accumulation of neutrophil granulocytes in liver tissue by LPS + Dcl as well as by PIC + Dcl. However, only LPS + Dcl lead to extensive release of pro-inflammatory cytokines, chemokines and cytotoxic danger signals (IL-1β, TNF-α, CINC-1, HMGB1, LTB4) into plasma. Furthermore, down-regulation of protective factors (SOD2, HSPs, PGE2) suggested an impairment of negative feedback mechanisms in animals treated with LPS + Dcl. In summary our results show no major role of metabolic Dcl bioactivation or accumulation of reactive Dcl metabolites in the pathogenesis of idiosyncratic hepatotoxicity. In contrast to PIC or BSO only administration of LPS as stress factor lead to activation of co-stimulatory pathways as well as impairment of protective systems, resulting in potentiation of liver toxicity of therapeutic Dcl doses.
|
Page generated in 0.0474 seconds