• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lei dos grandes números na percolação multi-dimensional

de Medeiros Sampaio, Murilo January 2007 (has links)
Made available in DSpace on 2014-06-12T18:03:45Z (GMT). No. of bitstreams: 2 arquivo7187_1.pdf: 664114 bytes, checksum: b12b11ba3f6dddd7fbd09a46ca1cefa7 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2007 / Nesta dissertação nós estudamos um processo multi-dimensional com interação local, que é essencialmente um exemplo de percolação orientada com qualquer dimensão natural mais que um. Nosso resultado principal, o teorema 2, é uma generalização da Lei dos Grandes Números (LGN) para conjuntos finitos arbitrários das componentes deste processo. Desde que nossas componentes são colocadas em um espaço multi-dimensional, não há maneira preferível de ordená-la em uma seqüência. Assim, anunciamos e provamos um análogo multi-dimensional da LGN para todos os conjuntos finitos das componentes. Este resultado é baseado em um outro, o teorema 1, a saber um decrescimento exponencial da correlação entre componentes quando a distância entre eles tender à infinidade
2

O problema de Monty-Hall

Santos, Leonardo Garcia dos January 2015 (has links)
Dissertação (mestrado profissional) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas, Programa de Pós-Graduação em Matemática, Florianópolis, 2015. / Made available in DSpace on 2016-04-19T04:07:33Z (GMT). No. of bitstreams: 1 337661.pdf: 447399 bytes, checksum: cc67ce09dcec41ec0de99ca836eba9fa (MD5) Previous issue date: 2015 / Um dos principais problemas no ensino da Matemática no Ensino Médio é a falta união da teoria com a comprovação dos resultados. Em particular, o ensino da Teoria da Probabilidade, muitas vezes acaba sendo abolido do ano letivo dos alunos por este motivo. Neste sentido, necessita-se buscar uma problemática que consiga promover o interesse e a validação prática dos resultados. Seguindo esta proposta, mostramos o programa de auditório Let's make a deal exibido na década de 70 nos Estados Unidos, o apresentador Monty Hall, exibia três portas para os concorrentes, uma delas com um carro por detrás, e outras duas onde se encontravam bodes. O concorrente escolhia uma porta, e em seguida Monty Hall desvendava uma porta onde se encontrara um bode. Logo depois, Monty sugeria ao participante a oportunidade de manter-se com a mesma porta ou trocar para a outra porta fechada. O concorrente deveria mudar? Para desvendar o Problema de Monty Hall e utilizá-lo como estímulo no Ensino da Teoria das Probabilidades no Ensino Médio, foi desenvolvido neste trabalho a solução deste problema utilizando conceitos probabilísticos, principalmente os de Probabilidade Condicional e Teorema de Bayes, bem como a criação de um Modelo no Software Excel baseado nas Simulações de Monte Carlo para comprovação experimental dos resultados (união da teoria com a prática).<br> / Abstract : One of the main problems in teaching Mathematics in High School is the lack of union between theory and result validation. In particular, the teaching of Probability Theory, ends up being abolished from the school year. For this reason we need to search a problem that promotes the interests the practical validation results. Following this proposition we presents the TV show Let´s make a deal aired in the 1970s in the United States, the host Monty-Hall, showed three doors to the competitors, one of them with a car behind, and another two with goats behind. The competitor chose one of the doors, and after that, Monty-Hall revealed one door where there was a goat. A few moments later, Monty offered the competitor the chance to keep the same door or to change to the another closed one. Should the competitor should change his door? To study Monty-Hall's problem and use it as a stimulus in the education of Probability Theory in High School, it will be developed in this text the solution of this problem using probabilistic concepts, mainly that of Conditional Probability and Bayes' Theorem, as well as it will be shown a Model in Excel Software based on the Monte Carlo's Simulation as an experimental evidence of the results (union of theory with practice).
3

A lei fraca de Feller para jogos de São Petersburgo / Feller\'s weak law applied to St. Petersburg games

Rocha, Rodrigo Viana 09 June 2009 (has links)
Quase três séculos já se passaram desde que a primeira versão do chamado paradoxo de São Petersburgo chegou aos meios acadêmicos através do trabalho de Daniel Bernoulli. Contudo, a relevância desse assunto ainda reverbera em artigos científicos atuais em diversas áreas do conhecimento (notadamente, mas não exclusivamente, na Economia e na Estatística). Um jogo de enunciado simples cuja esperança matemática dos ganhos do jogador surpreendentemente é infinita, entretanto, dificilmente alguém estaria disposto a pagar qualquer taxa de entrada cobrada para jogá-lo. No presente trabalho buscou-se em primeiro lugar apresentar uma análise crítica do desenvolvimento histórico das \"soluções\" propostas para o paradoxo. Em seguida mostrou-se uma aplicação direta do paradoxo a um modelo matemático utilizado até hoje para avaliar o preço justo de ações. Por fim, revisaram-se alguns resultados obtidos pela moderna teoria da probabilidade através da convergência em probabilidade. / It has been almost three centuries since the first version of the so-called St. Petersburg Paradox has reached the academic environment through the work of Daniel Bernoulli. However, the relevance of this subject still reverberates in new scientific papers in many knowledge fields (especially, but not exclusively, in Economics and Statistics). A game with a simple rule in which the mathematical expectation of the player\'s gains is unexpectedly infinite but hardly someone would be willing to pay any asked entrance fee to play it. In this work we pursued at first to present a critical analysis on the historical development of the proposed \"solutions\" to the paradox. After that, we showed an application of the paradox to a mathematical model, that is still in use today, to obtain a fair price of a stock share. At last we reviewed some results given by the modern probability theory through the convergence in probability.
4

A lei fraca de Feller para jogos de São Petersburgo / Feller\'s weak law applied to St. Petersburg games

Rodrigo Viana Rocha 09 June 2009 (has links)
Quase três séculos já se passaram desde que a primeira versão do chamado paradoxo de São Petersburgo chegou aos meios acadêmicos através do trabalho de Daniel Bernoulli. Contudo, a relevância desse assunto ainda reverbera em artigos científicos atuais em diversas áreas do conhecimento (notadamente, mas não exclusivamente, na Economia e na Estatística). Um jogo de enunciado simples cuja esperança matemática dos ganhos do jogador surpreendentemente é infinita, entretanto, dificilmente alguém estaria disposto a pagar qualquer taxa de entrada cobrada para jogá-lo. No presente trabalho buscou-se em primeiro lugar apresentar uma análise crítica do desenvolvimento histórico das \"soluções\" propostas para o paradoxo. Em seguida mostrou-se uma aplicação direta do paradoxo a um modelo matemático utilizado até hoje para avaliar o preço justo de ações. Por fim, revisaram-se alguns resultados obtidos pela moderna teoria da probabilidade através da convergência em probabilidade. / It has been almost three centuries since the first version of the so-called St. Petersburg Paradox has reached the academic environment through the work of Daniel Bernoulli. However, the relevance of this subject still reverberates in new scientific papers in many knowledge fields (especially, but not exclusively, in Economics and Statistics). A game with a simple rule in which the mathematical expectation of the player\'s gains is unexpectedly infinite but hardly someone would be willing to pay any asked entrance fee to play it. In this work we pursued at first to present a critical analysis on the historical development of the proposed \"solutions\" to the paradox. After that, we showed an application of the paradox to a mathematical model, that is still in use today, to obtain a fair price of a stock share. At last we reviewed some results given by the modern probability theory through the convergence in probability.
5

Distribuição de autovalores de matrizes aleatórias. / Eigenvalues distribution of random matrices.

Silva, Roberto da 18 May 2000 (has links)
Em uma detalhada revisão nós obtemos a lei do semi-círculo para a densidade de estados no ensemble gaussiano de Wigner. Também falamos sobre a analogia eletrostática de Dyson, enxergando os autovalores como cargas que se repelem no círculo unitário, mostrando que nesse caso a densidade de estados é uniforme. Em um contexto mais geral nós obtemos a lei do semicírculo, provando o teorema de Glivenko-Cantelli para variáveis fortemente correlacionadas usando um método combinatorial de contagem de trajetos, o que nos dá subsídios para falar em estabilidade da lei do semi-círculo. Também, nesta dissertação nós estudamos as funções de correlação nos ensembles gaussiano e circular, mostrando que sob um adequado reescalamento elas são idênticas. Outros ensembles nesta dissertação foram investigados usando o Método de Gram para o caso em que os autovalores são limitados em um intervalo. Computamos a densidade de estados para cada um desses ensembles. Mais precisamente no ensemble de Chebychev, os resultados foram obtidos analiticamente e nesse ensemble além da densidade de estados, também traçamos grá…cos da função de correlação truncada. / In a detailed review we obtain a semi-circle law for the density of states in theWigner’s Gaussian Ensemble. Also we talk about Dyson’s Analogy, seeing the eigenvalues like charges that repulse themselves in the unitary circle, showing that this case the density of states is uniform. In a more general context we obtain the semi-circle law, proving the Glivenko-Cantelli Theorem to strongly correlated variables, using a combinatorial method of Paths' Counting. Thus we are showing the stability of the semi-circle Law. Also, in this dissertation we study the correlation functions in the Gaussian and Circular ensembles showing that using the Gram's Method in the case that eigenvalues are limited in a interval. In these ensembles we computed the density of states. More precisely, in a Chebychev ensemble the results were obtained analytically. In this ensemble, we also obtain graphics of the truncated correlation function.
6

Distribuição de autovalores de matrizes aleatórias. / Eigenvalues distribution of random matrices.

Roberto da Silva 18 May 2000 (has links)
Em uma detalhada revisão nós obtemos a lei do semi-círculo para a densidade de estados no ensemble gaussiano de Wigner. Também falamos sobre a analogia eletrostática de Dyson, enxergando os autovalores como cargas que se repelem no círculo unitário, mostrando que nesse caso a densidade de estados é uniforme. Em um contexto mais geral nós obtemos a lei do semicírculo, provando o teorema de Glivenko-Cantelli para variáveis fortemente correlacionadas usando um método combinatorial de contagem de trajetos, o que nos dá subsídios para falar em estabilidade da lei do semi-círculo. Também, nesta dissertação nós estudamos as funções de correlação nos ensembles gaussiano e circular, mostrando que sob um adequado reescalamento elas são idênticas. Outros ensembles nesta dissertação foram investigados usando o Método de Gram para o caso em que os autovalores são limitados em um intervalo. Computamos a densidade de estados para cada um desses ensembles. Mais precisamente no ensemble de Chebychev, os resultados foram obtidos analiticamente e nesse ensemble além da densidade de estados, também traçamos grá…cos da função de correlação truncada. / In a detailed review we obtain a semi-circle law for the density of states in theWigner’s Gaussian Ensemble. Also we talk about Dyson’s Analogy, seeing the eigenvalues like charges that repulse themselves in the unitary circle, showing that this case the density of states is uniform. In a more general context we obtain the semi-circle law, proving the Glivenko-Cantelli Theorem to strongly correlated variables, using a combinatorial method of Paths' Counting. Thus we are showing the stability of the semi-circle Law. Also, in this dissertation we study the correlation functions in the Gaussian and Circular ensembles showing that using the Gram's Method in the case that eigenvalues are limited in a interval. In these ensembles we computed the density of states. More precisely, in a Chebychev ensemble the results were obtained analytically. In this ensemble, we also obtain graphics of the truncated correlation function.

Page generated in 0.1042 seconds