• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Validation of the MOPITT-A instrument through radiative transfer modelling and laboratory calibration

Lamont, Kirk 31 August 2007
This thesis presents the characterization and calibration of the MOPITT-A instrument which uses the technique of correlation spectroscopy to ensure carbon monoxide in the atmosphere. A theoretical model is developed for the instrument and compared to MOPITT-A measurements collected under controlled laboratory conditions, which were designed to emulate atmospheric signals. It is shown that the model and measurements are in very good agreement with each other and that the MOPITT-A instrument behaves as expected. It was found that the gain of the instrument varies with time. The cause of the gain variation is not known but it is suggested that frosting inside the detector nest would be consistent with the observed nature of the variation.
2

Validation of the MOPITT-A instrument through radiative transfer modelling and laboratory calibration

Lamont, Kirk 31 August 2007 (has links)
This thesis presents the characterization and calibration of the MOPITT-A instrument which uses the technique of correlation spectroscopy to ensure carbon monoxide in the atmosphere. A theoretical model is developed for the instrument and compared to MOPITT-A measurements collected under controlled laboratory conditions, which were designed to emulate atmospheric signals. It is shown that the model and measurements are in very good agreement with each other and that the MOPITT-A instrument behaves as expected. It was found that the gain of the instrument varies with time. The cause of the gain variation is not known but it is suggested that frosting inside the detector nest would be consistent with the observed nature of the variation.

Page generated in 0.0959 seconds