Spelling suggestions: "subject:"lesser show geese"" "subject:"lesser slow geese""
1 |
The Impact of Lesser Snow Goose Herbivory on Above and Belowground Nutrient Dynamics in Two Sub-Arctic EcosystemsHorrigan, Emma J. 26 July 2010 (has links)
In order to determine the impact of lesser snow goose (Chen caerulescens caerulescens) herbivory on above and belowground nutrient dynamics, a grazing and nutrient addition experiment was conducted in two habitat types utilized by snow geese near Churchill, Manitoba. Forage plant nutrition, soil microbial biomass, and inorganic and organic soil nutrients were measured in relation to the timing of grazing, over two consecutive summers. Soil was collected from the rhizosphere to determine the influence of foliar herbivory on root-microbe interactions. Primary productivity in both habitats is co-limited by the availability of both nitrogen (N) and phosphorus (P). Aboveground defoliation either caused a reduction or no change in soil microbial biomass nutrients (carbon (C), N, or P). Defoliated shoots had higher N concentrations and did not show compensatory growth within the season. Root biomass was somewhat reduced with grazing, but higher whole plant N content suggests that grazing does not compromise N-uptake.
|
2 |
The Impact of Lesser Snow Goose Herbivory on Above and Belowground Nutrient Dynamics in Two Sub-Arctic EcosystemsHorrigan, Emma J. 26 July 2010 (has links)
In order to determine the impact of lesser snow goose (Chen caerulescens caerulescens) herbivory on above and belowground nutrient dynamics, a grazing and nutrient addition experiment was conducted in two habitat types utilized by snow geese near Churchill, Manitoba. Forage plant nutrition, soil microbial biomass, and inorganic and organic soil nutrients were measured in relation to the timing of grazing, over two consecutive summers. Soil was collected from the rhizosphere to determine the influence of foliar herbivory on root-microbe interactions. Primary productivity in both habitats is co-limited by the availability of both nitrogen (N) and phosphorus (P). Aboveground defoliation either caused a reduction or no change in soil microbial biomass nutrients (carbon (C), N, or P). Defoliated shoots had higher N concentrations and did not show compensatory growth within the season. Root biomass was somewhat reduced with grazing, but higher whole plant N content suggests that grazing does not compromise N-uptake.
|
3 |
Legacy Effects of Habitat Degradation by Lesser Snow Geese on Ground-Nesting Savannah Sparrows along the Hudson Bay LowlandsPeterson, Stephen L. 01 May 2013 (has links)
Increased growth of the mid-continent population of Lesser Snow Geese (LSGO) has led to the degradation of coastal salt marsh and sedge meadow habitats across Canadian Arctic and sub-Arctic ecosystems. It is believed that a human-induced trophic cascade caused by agricultural habitat modification along migratory routes and wintering grounds has contributed to the increase in LSGO numbers, which has resulted in the alteration of habitat quality and connectivity along northern breeding and stopover sites used by various avian species. This habitat degradation has been shown to decrease the presence and temporal persistence of ground-nesting passerine and shorebird species at a local level and may lead to decreases of Arctic / sub-Arctic breeding avian species across landscapes that LSGO utilize and degrade.
In 1999, four paired study plots were established, and used in conjunction with a single study plot from 1976, in order to measure the composition of habitat parameters (barren ground extent; graminoid and shrub cover) and to estimate the number of avian nests found in these plots. Using this historical data along with our findings from 2010 and 2011, our main objectives were to: 1) document the change in the aforementioned habitat parameters over time; 2) estimate the local nesting occupancy rates of the common Savannah Sparrow (SAVS), a robust and adaptable ground nester; and 3) determine which habitat variables are indicative of the rates of change and occurrence of nesting by SAVS within the study plots.
By using ANOVA, linear mixed effects, and multi-state occupancy models, results suggest that an increase in barren ground, decreases in shrub and graminoid cover, and a loss of connectivity between suitable nesting patches has led to a 10% (λ = 0.90) annual decline in the probability that SAVS nesting occurred across the study plots from 1999 to 2010.
These model results may be used to estimate long-term trends in persistence of breeding SAVS and other similar ground-nesting avian species that share habitats with LSGO along Arctic and sub-Arctic ecosystems. (93 pages)
|
Page generated in 0.0559 seconds