• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 12
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 205
  • 70
  • 45
  • 41
  • 31
  • 29
  • 29
  • 25
  • 21
  • 17
  • 14
  • 13
  • 13
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Long term bone marrow culture studies of patients with lymphoid malignancies undergoing autologous bone marrow transplantation

Jackson, G. H. January 1991 (has links)
No description available.
82

Studies utilising a transgenic mouse model to investigate the pathogenesis of HTLV-1 tax

Hall, A. Peter January 1999 (has links)
No description available.
83

The role of the CtIP gene as a genetic susceptibility factor for radiation leukaemogenesis

Nasilowska, Agata January 2014 (has links)
Exposure to ionising radiation increases the risk of cancer, including acute myeloid leukemia (AML), which is the most common myeloid leukaemia. The C-terminal binding protein (CtBP)-interacting protein (CtIP), which is essential for embryonic development and possibly functions as a tumour suppressor, has been identified as a strong candidate for susceptibility to radiation-induced AML (rAML).
84

Immunotherapy and immunomodulation for haematological malignancies

Mussai, Francis Jay January 2012 (has links)
HA22 is an immunotoxin composed of an anti-CD22 variable fragment linked to a 38 kDa truncated protein derived from Pseudomonas exotoxin A. The mechanisms of cytotoxicity and resistance of HA22 against Acute Lymphoblastic Leukaemia (ALL) and Burkitt’s lymphoma were studied. Using a bone marrow mesenchymal cell culture assay to support ALL cell viability, I? investigated the in vitro cytotoxicity of HA22 against ALL blasts from newly diagnosed and relapsed patients. There was interpatient variability in sensitivity to HA22. There was no significant difference in HA22 sensitivity between diagnosis and relapse samples but peripheral blood ALL blasts were more sensitive to HA22 than those from bone marrow. The mechanisms of resistance to HA22 were studied, using cell lines as a model. The number of CD22 sites/ cell and the rates of immunotoxin internalisation did not affect HA22 cytotoxicity. HA22 mutants with resistance to lysosomal degradation and enhanced targeting to the endoplasmic reticulum had improved cytotoxicity. The role of apoptosis pathways proteins in HA22-mediated cell death was studied. Their role is complex but raised levels of the anti-apoptotic pathway protein Bcl-2 were found in the most resistant NALM6 cell line. Penetration of HA22 into Burkitt’s lymphoma masses was studied using a flow cytometric based method. HA22 rapidly penetrated into the lymphoma masses, however a barrier to further uptake is present which could not be overcome by the addition of adriamycin or taxol in the murine xenograft model. The ability of Acute Myeloid Leukaemia (AML) blasts to create an immunosuppressive niche was investigated using a cell line model and primary patient samples. AML blasts suppress T cell proliferation through altered arginine metabolism, dependent on the enzymes arginase II and iNOS. Small molecule inhibitors to arginase and iNOS restored T cell proliferation in vitro. AML further enhances its immunosuppressive niche by transforming surrounding monocytes into an M2-immunosuppressive phenotype, in an arginase dependent manner. The immunomodulatory protein Serum Amyloid A (SAA) was secreted by AML blasts, and leads to AML chemotaxis, IL-1production, and release of S100A9 protein. Finally, invariant Natural Killer T cells (iNKT) were shown to be cytotoxic to some AML blasts, in the presence of Galactosylceramide, and thus able to restore T cell proliferation. The results provide a strong rationale for the clinical testing of these novel immunotherapeutic and immunomodulatory strategies in patients with haematological malignancies.
85

Investigating the mechanism of bone marrow failure observed in patients with acute myeloid leukaemia

Hodby, Katharine Ailsa January 2018 (has links)
Patients with Acute Myeloid Leukaemia (AML) present with the signs and symptoms of bone marrow failure. This finding spans the genetic and phenotypic diversity of the disease. The mechanism which underlies it is poorly understood. This thesis explores the effect of AML on the normal haematopoietic stem cell (HSC) population, using primary human diagnostic bone marrow samples. Previous work from our group suggested that AML induces a state of quiescence in HSCs, producing a differentiation block responsible for the observed cytopenias1. Reversal of this process might offer an alternative to the current treatment of patients with palliative transfusions. I have developed a flow cytometry-based technique to differentiate normal HSCs from leukaemia cells, selecting cells with the CD34+38-ALDHhighCLL1- expression signature. Validation of this technique by assessment of sorted cells by FISH and PCR, suggests it is successful in 73% of AML samples. In a further 25% of samples, it selects for a population significantly enriched for normal HSCs. We used this panel to investigate the concentration of HSCs at AML diagnosis, compared to controls. We show that there is no significant difference between HSC concentration at AML diagnosis (n=38, median [HSC] 2.5 cells/μl) and controls (n=24, median [HSC] 2.4 cells/μl). HSC concentration was not significantly affected by AML karyotype, patient age or gender. However, those patients presenting with a low HSC concentration at diagnosis (< 0.1 HSC/μl) were found to have a significantly worse outcome both in terms of overall and relapse-free survival, an effect apparently independent of age, gender and underlying karyotype. HSC concentration at diagnosis with AML may therefore represent a new independent prognostic marker. We then studied CD33 expression patterns on HSCs within Core Binding Factor mutated AML (n=37) at diagnosis, and found its expression to be significantly lower than on HSCs within controls (n=9) (17% versus 58%, p=0.005). CD33 expression on HSCs from AML samples rose significantly from diagnosis to remission (n=16) (17% to 58%, p=0.0001). This mirrors previous findings from our group using CD34low AML samples, and is, we believe, the first time that the antigenic signature of normal HSCs has been shown to be modified. 6 by the presence of AML. However, an in vitro assay to test the significance of these changes in terms of the cytotoxicity of GO towards normal HSCs did not demonstrate a significant difference between HSC subgroups. Finally, we attempted to investigate the mechanism by which AML might induce HSC quiescence by studying the comparative transcriptomes of HSCs from CD34low AML (n=6) and controls (n=6) by RNA-Seq, using direct cell to cDNA synthesis, followed by amplification. A first attempt resulted in poor quality data, with a significant proportion of reads mapping to non-coding DNA regions. A repeat approach, using utilising immediate RNA extraction post sorting resulted in significantly better quality data Bioinformatics analysis revealed differential expression of 6 genes between the 2 datasets (GNPDA1, ADGRG3, MIAT, WDR31, RP11-244H3.1 and RXFP1). GO enrichment studies using David highlighted a number of pathways including the TNF signalling pathway (p=0.003; after Benjamini-Hochberg correction p=0.51). Validation of these findings by independent qPCR, and functional exploration of enriched signalling pathways remains outstanding.
86

The utilisation of shRNA screens to investigate the role of phosphoinositide modulator genes in actue myeloid leukaemia

Blaser, Julian January 2013 (has links)
Phosphoinositides (PIs) are pivotal lipid molecules with both scaffolding and signalling functions regulating key aspects of cellular physiology. For example, phosphatidylinositol (3,4,5)-trisphosphate, generated by phosphoinositide 3-kinase (PI3K), is an essential mediator of the PI3K/AKT signalling pathway, which is crucial for cell proliferation, survival and apoptosis. Constitutive activation of this signalling cascade has been identified in acute myeloid leukaemia (AML), the most common haematopoietic malignancy in adults, and experimental deletion of the PI3K antagonists PTEN and SHIP cause leukaemia in mice. However, little is known regarding the role of other PI modulator proteins in AML. Thus, in this thesis, a lentivirally delivered small hairpin RNA (shRNA) library targeting 103 genes (345 pLKO knockdown constructs) with presumed or established roles in PI metabolism was utilised to screen for genes required for AML blast cell viability/proliferation and differentiation. First, knockdown constructs were tested for their impact on proliferation/viability in seven human AML cell lines by measuring fold change in fluorescence of the cell viability dye alamarBlue relative to controls (cells transduced with a non-targeting control hairpin) over three days. This identified 13 candidate genes selected with the criterion that two or more knockdown constructs per gene reduce cell viability/proliferation relative to control by greater than or equal to50 % across all cell lines. From these candidate genes, PIP4K2A, INPP5B and IMPAD1 were selected for downstream validation experiments, which reproduced the observation from the primary screen. For INPP5B and IMPAD1, knockdown constructs also reduced clonogenic potential of primary human AML samples but only showed a modest effect on normal CD34+ haematopoietic stem or progenitor cells (HSPCs) in a methylcellulose based assay. This could be recapitulated in a murine setting where knockdown constructs targeting both genes reduced clonogenic potential of murine MLL- AF9 AML cells with little effect on normal KIT+ HSPCs. In line with this, Inpp5b knockout KIT+ BM cells either failed to immortalise or weakly immortalised, following forced expression of the powerful MLL-AF9 oncogene. A further screen was performed to identify regulators of THP-1 blast cell differentiation, by seeding knockdown construct transduced cells into methylcellulose based semisolid media. After ten days of incubation the degree of macrophage differentiation was evaluated by light microscopy and an arbitrary differentiation score was given. With the criterion that greater than or equal to2 knockdown constructs per gene received the highest differentiation score, reflecting terminal macrophage differentiation of all seeded cells, SBF2 was identified as the top-scoring hit. Validation experiments have confirmed macrophage differentiation based on cytospin preparations of SBF2 knockdown THP-1 cells. Moreover, xenograft assays have shown that knockdown constructs targeting PIP4K2A and SBF2 delayed or abrogated in vivo leukaemogenesis. Thus this work has identified novel roles for PI modulator genes in human AML with possible therapeutic potential.
87

The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukaemia stem cells

Harris, William January 2013 (has links)
Rearrangements involving the mixed lineage leukaemia (MLL) gene are found in 5-10% of human leukaemias and are likely propagated by a deregulated self renewing pool of leukaemia stem cells (LSCs). Targeting of the LSC pool represents a key novel strategy for the treatment of AML. In recent years epigenetic dysfunction has been identified as a key driving factor in a range of solid tumours and haematological malignancies. Evidence for this includes identification of mutations in the genes coding for critical epigenetic modifiers, characterisation of localised regions of abnormal chromatin at oncogene or tumour suppressor genes and the efficacious use of epigenetic-targeted therapies already present in the clinic. The data submitted in this thesis identify the histone demethylase KDM1A as a critical regulator of LSC potential in MLL-AF9 acute myeloid leukaemia (AML). Of all the histone demethylases, we found that only Kdm1a expression correlated positively and significantly with LSC frequency in murine models of human MLL fusion AML. Genetic knockdown or Cre-mediated excision of Kdm1a resulted in loss of LSC potential, reduced expression of LSC maintenance transcriptional programs and induction of macrophage differentiation in MLL-AF9 cells. These effects were phenocopied by chemical inhibition of KDM1A using the monoamine oxidase inhibitor tranylcypromine (TCP), as well as novel TCP analogues which inhibit KDM1A with greater potency and selectivity. These results were seen in murine, human cell line and primary patient cells harbouring MLL rearrangements. Global transcriptome and epigenome analyses revealed a key role for KDM1A in maintaining the histone three lysine four (H3K4) methylation status at highly expressed MLL-AF9-bound genes. In vivo transplantation of Kdm1a knockdown MLL-AF9 cells conferred a significant survival advantage compared with control littermates. Similarly, TCP analogue treatment of mice transplanted with MLL-AF9 cells revealed a reduction in LSC potential of the donor-derived AML cells but little impact on normal recipient haematopoietic stem and progenitor cells (HSPCs). Critically the clonogenic and repopulating potential of normal HSPCS, of both murine and human origin, was spared following either knockdown or chemical inhibition of KDM1A. Taken together, the data presented establish KDM1A as a potential therapeutic target in MLL fusion leukaemia.
88

Role of the metabolic enzyme fumarate hydratase in aged haematopoiesis and malignant transformation

Panagopoulou, Theoni Ioanna January 2017 (has links)
The finely tuned regulation of haematopoiesis is crucial in order to maintain life-long haematopoiesis. The disruption of the balance among cell fates, can lead to malignant transformation. It has become increasingly evident that the metabolic regulation haematopoietic stem cells is critical for stem cell fate decisions. Haematopoietic stem cells reside in a hypoxic microenvironment within the bone marrow and are thought to mainly utilize glycolysis rather than oxidative phosphorylation in order to maintain their pool. However recent evidence suggests that oxidative phosphorylation is critical for quiescent HSCs and in several cases, for leukaemic stem cells (LSCs). One of the key parts of mitochondrial respiration is the tricarboxylic cycle (TCA), providing co-factors for its efficient activity. The TCA functions by catalysing the oxidation of pyruvate via key enzymatic activities. A key component of the TCA cycle is fumarate hydratase (Fh1) which catalyses the hydration of fumarate into malate within the mitochondria, but also catalyses the same reaction in the cytoplasm. FH is a tumour suppressor in human lyomeioma and renal kidney cancer (HLRCC). Previous work conducted by our team has shown that Fh1 is essential for foetal and adult haematopoiesis, as Fh1 deletion within the haematopoietic system is embryonic lethal. Furthermore, conditional deletion of Fh1 in donor cells of the Mx1-Cre system that were injected in lethally irradiated recipients, resulted in the complete reduction of their chimerism in the peripheral blood of recipient mice. Mechanistically, these phenotypes were mostly associated with supra-physiological levels of fumarate as a result of Fh1 deletion. Interestingly, by employing mice that ubiquitously express the human cytosolic isoform of FH (FHCyt, which lacks the mitochondrial targeting sequence and therefore is excluded from the mitochondria), we rescued the embryonic lethality that Fh1 causes, and reduced the levels of fumarate. Importantly, although FHCyt expression restored fumarate-associated lethality, it did not restore the mitochondrial defects, allowing us to study the importance of genetically intact TCA in the context of haematopoiesis. Here I investigated the impact that a genetic truncation of the TCA cycle (as a result of the lack of the mitochondrial isoform of Fh1) has on leukaemic transformation and on aged haematopoiesis. Fh1fl/fl; FHCyt; Vav-iCre mice of approximately 60 weeks old displayed and expansion in the pool of early stem and progenitor compartment (Lin- Sca-1+ c-Kit+), as well as in the early progenitors HPC-1 (LSK CD48+ CD150-) and HPC-2 (LSK CD48+ CD150+). Furthermore, the mice exhibited a drastic depletion of B cells (CD19+ B220+) and an expansion in the frequency of the myeloid compartment (Mac-1+ Gr1+). In order to assess the importance of the TCA cycle in malignant transformation, I isolated stem and progenitor cells from Fh1fl/fl; FHCyt; Vav-iCre (and control (Fh1fl/fl; FHCyt Vav-iCre negative or Fh1fl/fl Vav-iCre negative)) E 14.5 day old embryos and infected them with retroviruses expressing Meis1 and Hoxa9, and generated pre-leukaemic cells (pre-LCs). Genetically intact TCA was required for the efficient generation of leukaemia-initiating cells (LICs), as injection of pre-LCs lacking mitochondrial Fh1 into sub-lethally irradiated recipient mice, resulted in 76 % of leukaemia-free mice while injection of control pre-LCs resulted in 25 % of leukaemia-free mice. However, the genetic perturbation of the TCA did not exert and effect on the long-term self-renewal capacity of LICs. Inducible deletion of mitochondrial Fh1 in established LICs of the Mx1-Cre background using poly (I:C) did not affect their ability to generate AML in primary and secondary recipient mice. These data indicate that genetically intact TCA is required for the efficient generation of LICs in vivo but is dispensable for their long-term self-renewal capacity, highlighting the metabolic rewiring that occurs at different stages of leukaemic transformation. In an effort to understand whether, similarly to HLRCC, Fh1 plays a tumour-suppressive role in malignant haematopoiesis, I isolated LSK cells from the foetal liver of E 14.5 old embryos lacking both isoforms of Fh1. Fh1fl/fl; Vav-iCre cells transduced with Meis1/Hoxa9 or MLL-AF9, MLL-ENL, AML-ETO (chromosomal translocations involved in AML development) -expressing retroviruses, failed to generate colonies in methylcellulose, indicating that stem and progenitor cells require Fh1 to undergo in vitro transformation by these oncogenes. Furthermore, acute deletion of Fh1 (via the use of lentivirally-expressed Cre) in pre-LCs generated using the Meis1/Hoxa9 retroviruses, rendered them unable to generate colonies in methylcellulose, indicating that Fh1 is required for the self-renewal capacity of pre- LCs in vitro. Similarly, when LICs (Fh1fl/fl; Vav-iCre negative) isolated from primary recipient mice were infected with Cre to induce deletion of Fh1, they were unable to generate colonies indicating that Fh1 is required for the self-renewal capacity of LICs in vitro. Finally, in order to identify whether Fh1 is important for LIC self-renewal in vivo I generated Fh1fl/fl; Mx1-Cre pre-LCs by infecting stem and progenitor cells of E 14.5 embryos with Meis1/Hoxa9 retroviruses, and injected them into sub-lethally irradiated mice. After the mice developed AML, I induced the deletion of Fh1, by injecting the mice with poly (I:C). Interestingly, the percentage of LICs in the peripheral blood of recipient mice was drastically decreased, leaving recipient mice leukaemia-free for the remaining time they were monitored. Surprisingly however, approximately 50 % of the recipient mice exhibited a drastic increase in LIC chimerism after two weeks post poly (I:C). Assessment of LICs isolated from recipient mice indicated that Fh1 was fully deleted. These data indicate that while in some cases Fh1 is required for LIC self-renewal in vivo, in other cases it is dispensable. Therefore, the tumour-suppressive roles of Fh1 are likely tissue-specific and do not extend to haematopoietic cells. Overall, this study agrees with published work supporting the notion that intact mitochondrial respiration is important (in varying degrees), in both the contexts of normal and malignant haematopoiesis.
89

Role of Jmjd6 in normal and malignant haematopoiesis

Sepúlveda, Catarina January 2017 (has links)
The finely tuned regulation of haematopoietic stem and progenitor cells (HSPCs) is crucial to sustain normal haematopoiesis. The disruption of the balance between the quiescence state of haematopoietic stem cells (HSCs) and the proliferation/differentiation programs that are necessary to meet daily haematopoietic demands and respond to external insults, can lead to malignant transformation, such as acute myeloid leukaemia (AML). Therefore, it is essential to investigate the players that are responsible to maintain haematopoietic homeostasis, so that novel therapeutic targets can be identified. HSCs reside in a hypoxic environment that is crucial for their maintenance, as it protects them from over-proliferation and exhaustion. The response to a limited availability of oxygen is critically mediated by a transcription factor - hypoxia inducible factor (HIF). HIF is predominantly regulated by prolyl hydroxylases (PHDs) that are 2-oxoglutarate (2OG) dependent oxygenases. This superfamily of oxygen-sensing enzymes has been assigned important roles ranging from hypoxia signaling, DNA repair, chromatin modifications and oncogenesis Following the data published by our group attesting that HIF is dispensable for HSC survival and maintenance, we focused our investigation on HIF-independent pathways. This manuscript describes the study of the role of an oxygen-sensor enzyme, member of the 2OG oxygenases and HIF negative regulator, jumonji domain-containing protein 6 (Jmjd6), in normal and malignant haematopoiesis. Our knockout studies deleting Jmjd6 specifically within the haematopoietic system (Jmjd6fl/fl;Vav-iCre) demonstrate that the homeostasis of HSPC pool was compromised and lymphopoiesis was attenuated in Jmjd6-deficient cohorts. Upon transplantation, HSCs lacking Jmjd6 exhibited a defective chimerism and impaired capacity to fully reconstitute haematopoiesis of recipient mice. Thus, Jmjd6 is essential for HSC self-renewal and maintenance. Our assessment of the impact of Jmjd6 deletion in the context of inflammatory response and recovery from treatment with a myelotoxic agent treatment revealed that Jmjd6 is a positive regulator of HSC homeostasis and recovery from cytotoxic stress. There are accumulating data on the importance of epigenetics in the development of haematological malignancies. Being an epigenetic regulator, clearly involved in RNA splicing, we investigated Jmjd6 as possible player in leukaemogenesis. The results from our leukaemic studies unravelled a new biological function for Jmjd6 as a tumour suppressor in Meis1/Hoxa9 murine model. Altogether, our findings offer important novel insights into the biological functions of Jmjd6 and pave the way for further studies to discover on the mechanism of action of this complex enzyme. Our observations add value to the idea that Jmjd6 might constitute a good candidate for cancer diagnosis, that can be use to ameliorate patient’s prognosis and that it can be used to help patient prognosis in the future.
90

Daunorubicin Kinetics and Drug Resistance in Leukaemia

January 1996 (has links)
The aims of this thesis were to examine: (1) plasma and cellular pharmacokinetics of daunorubicin and its major metabolite daunorubicinol in patients with acute leukaemia, and the relationships between pharmacokinetics, patient response and the presence of P glycoprotein; (2) actions of the multidrug resistance reversing agents cyclosporin A and trifluoperazine, at clinically achievable concentrations, on daunorubicin accumulation and retention in human leukaemia cell lines and patients with acute leukaemia; and (3) effect of daunorubicin on the cell membrane of both sensitive and resistant cell lines, with and without the multidrug resistance reversing agents. Twenty-seven patients with acute leukaemia received daunorubicin as part of induction therapy. The plasma and cellular levels of daunorubicin and its metabolite daunorubicinol were determined using HPLC. There were no significant differences between patients who went into complete remission (12 out of 23) compared to those who did not respond for any of the plasma pharmacokinetic parameters. There was a significant difference in the cellular daunorubicin and daunorubicinol area under the concentration-time curve between responders and non responders (p less than 0.02), as well as in cellular Cmax, cellular clearance and cellular volume of distribution. Eleven patients were P glycoprotein positive and 10 P glycoprotein negative (no sample available for 2 patients). There was no correlation between patient response and the presence of P glycoprotein; nor a correlation between the cellular concentration of daunorubicin or daunorubicinol and P glycoprotein. Patients responding to chemotherapy had higher cellular daunorubicin and daunorubicinol compared to non responders. In contrast to in vitro studies, overexpression of P glycoprotein was not the reason for the lower cellular daunorubicin levels. Cyclosporin A was capable of increasing both cellular accumulation and retention in the drug resistant CEM/VLB and HL 60/ADR cell lines, but not in the drug sensitive CEM and HL 60 cell lines. Trifluoperazine had no effect in any of the four cell lines. In contrast to the cell line findings, only the combination of cyclosporin A and trifluoperazine were able to increase both accumulation and retention in the blast cells of patients at initial presentation. The multidrug resistant reversing agents alone had no effect in increasing accumulation or retention in the blast cells of P glycoprotein positive patients, nor patients in relapse. The cell line studies show that at clinically relevant concentrations only cyclosporin A is capable of increasing daunorubicin accumulation in both the drug resistant P glycoprotein positive (VLB) and P glycoprotein negative (ADR) cell lines. Thus, cyclosporin A does not work only by inhibiting the actions of P glycoprotein. Trifluoperazine was unable to reverse drug resistance at clinically relevant concentrations in either cell lines or patient blast cells. However, the combination of cyclosporin A and trifluoperazine increased accumulation in patient blast cells at initial presentation, suggesting that these agents may be more useful in patients at initial presentation than relapse. Daunorubicin was immobilised by linking it to poly vinyl alcohol and the effect of immobilised-daunorubicin was studied on the four cell lines above. The immobilised-daunorubicin was able to decrease cell growth in the drug sensitive HL 60 cell line but not in the drug resistant VLB or ADR cell lines. Poly vinyl alcohol itself was cytotoxic to the CEM cell line. The multidrug resistance reversing agents cyclosporin A and trifluoperazine were only capable of increasing cytotoxicity in the HL 60 cell line, with no effect in the drug resistant VLB or ADR cell lines.

Page generated in 0.041 seconds