• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Affinités syntaxiques et sémantiques entre mots : apports mutuels de la linguistique et du TAL

Fabre, Cécile 29 November 2010 (has links) (PDF)
Je présente un bilan des travaux que j'ai menés depuis mon recrutement à l'Université de Toulouse 2 - Le Mirail (1997) dans le domaine de la linguistique et du Traitement Automatique des Langues (TAL). J'ai exploré le lien entre ces deux disciplines de deux façons que j'estime complémentaires : tout d'abord, je considère le champ applicatif du TAL comme un terrain d'investigation important pour la linguistique. Le TAL, et de façon générale, les applications relevant du domaine de l'ingénierie des langues, sollicitent un renouvellement des objets d'étude de la linguistique et élargissent le champ de ses questionnements. En retour, la linguistique gagne à s'appuyer sur des procédures de découverte issues du TAL, basées sur le traitement de corpus numérisés et annotés et sur le recours à des techniques de quantification adaptées aux besoins de la description linguistique. Au sein de ce cadre général, les travaux que j'ai menés ont porté principalement sur deux thématiques de recherche que j'ai résumées sous les termes d'affinités sémantiques et syntaxiques. Le premier concerne la question du repérage des rapports de proximité sémantique entre différents types d'unités (mots, termes, structures prédicatives). Identifier sous la diversité des formulations des éléments de contenu similaire est un objectif crucial pour de nombreuses applications qui visent l'accès à l'information dans les textes. Dans cette perspective, j'ai cherché à considérer sur le plan linguistique cette question de la proximité sémantique, en faisant en particulier appel à des techniques d'analyse distributionnelle automatique qui visent à calculer les rapprochements sémantiques entre mots sur la base de la similarité de leur comportement syntaxique dans les corpus. Cette approche inductive des relations de sens déborde largement les limites des relations classiquement décrites en linguistique et sollicite des procédures nouvelles de description et de validation. Le second volet concerne la question des affinités syntaxiques entre mots : impliquée dans le projet de développement et d'exploitation d'un analyseur syntaxique automatique, syntex, je me suis intéressée à une question qui est au coeur des problèmes d'ambiguïté syntaxique, à savoir le rattachement des groupes prépositionnels. J'ai travaillé en particulier à la mise au point d'une méthode permettant de distinguer des types différents de rattachement prépositionnel, de nature argumentale ou adjonctive. Dans ce cas également, mon travail est guidé par un objectif qui relève du TAL (améliorer les performances d'un analyseur), et ce projet m'a amenée en retour à retravailler une question linguistique centrale en syntaxe, la distinction entre arguments et circonstants, et à développer des méthodes d'analyse de corpus qui permettent de substituer à une conception binaire de ces notions une appréciation plus graduelle de l'autonomie du groupe prépositionnel par rapport au verbe. Je propose donc de montrer comment les outils de TAL appliqués aux corpus offrent à la linguistique des instruments d'observation et d'expérimentation qui permettent d'aborder les faits langagiers par le biais de l'observation des usages et sous l'angle de la quantification. Ma conviction est que la linguistique ainsi outillée peut jouer un rôle plus important sur les nombreux terrains applicatifs qui nécessitent l'analyse de données langagières.

Page generated in 0.0624 seconds