• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of wing flexibility on aircraft flight dynamics

Qiao, Yuqing 02 1900 (has links)
The purpose of this thesis is to give a preliminary investigation into the effect of wing deformation on flight dynamics. The candidate vehicle is FW-11 which is a flying wing configuration aircraft with high altitude and long endurance characteristics. The aeroelastic effect may be significant for this type of configuration. Two cases, the effect of flexible wing on lift distribution and on roll effectiveness during the cruise condition with different inertial parameters are investigated. For the first case, as the wing bending and twisting depend on the interaction between the wing structural deflections and the aerodynamic loads, the equilibrium condition should be calculated. In order to get that condition, mass, structure characteristics and aerodynamic characteristics are estimated first. Then load model and aerodynamic model are built. Next the interaction calculation program is applied and the equilibrium condition of the aircraft is calculated. After that, effect of wing flexibility on lift parameters is investigated. The influence of CG, location of lift and location of flexural axis are investigated. The other case is to calculate the transient roll rate response and estimate the rolling effectiveness of flexible aircraft, and compared with the rigid aircraft’s. A pure roll model is built and derivatives both for the rigid wing and the flexible wing are estimated. It has been found that flexible wing leads to the loss of control effectiveness, even cause reversal when reduces the structure natural frequency. The influence of inertia data for flexible roll is also investigated.
2

Effects of a Bell-Shaped Lift Distribution on an Oblique Flying Wing and its Impact on Aerodynamic Performance

Deslich, Joshua 22 June 2020 (has links)
No description available.
3

A Study of the Standard Cirrus Wing Lift Distribution Versus Bell Shaped Lift Distribution

Bergman, William H 01 June 2020 (has links) (PDF)
This thesis discusses a comparison of the differences in aerodynamic performance of wings designed with elliptical and bell-shaped lift distributions. The method uses a Standard Cirrus sailplane wing with a lift distribution associated with the induced drag benefits of an elliptical distribution (span efficiency = 0.96) as the basis of comparison. The Standard Cirrus is a standard class sailplane with 15-meter wingspan that was designed by Schempp-Hirth in 1969. This sailplane wing was modeled and analyzed in XFLR5, then validated against existing wind tunnel airfoil data, and Standard Cirrus flight test data. The root bending moment of the baseline wing was determined and used as the primary constraint in the design of two wings with bell-shaped lift distribution. These wings were modeled in XFLR5 by adjusting chord length and geometric twist respectively, and then they were studied using fixed speed lifting line analysis. Steady state cruise conditions for the Standard Cirrus sailplane were taken from the flight test data and applied for the analysis. The wing designed with chord variation posed incompatibilities with the lifting line method. The resulting planform was strongly tapered in the wingtip region and the reference chord length there was such that the software could not solve for a Reynolds number the magnitude resulting from two-dimensional airfoil analysis. However, the wing geometry provided insight into the design aspect of wings with bell-shaped lift distribution. Using chord variation to shape the lift distribution, the wing featured a 12% increase in wingspan but a 6.5% decrease in total wetted area when compared to the baseline. The results of the analysis of the wing designed with geometric twist indicate that induced drag decreased by 5% when compared to the baseline wing. The constraint on root bending moment resulted in a 12% increase in wingspan. Wetted area also increased by 14.8% over the baseline yielding an estimated 15% increase in skin friction.
4

A Parametric Study of Formation Flight of a Wing Based on Prandtl's Bell-Shaped Lift Distribution

Lukacovic, Kyle S 01 June 2020 (has links) (PDF)
The bell-shaped lift distribution (BSLD) wing design methodology advanced by Ludwig Prandtl in 1932 was proposed as providing the minimum induced drag. This study used this method as the basis to analyze its characteristics in two wing formation flight. Of specific interest are the potential efficiency savings and the optimal positioning for formation flight. Additional comparison is made between BSLD wings and bird flight in formation. This study utilized Computational Flow Dynamics (CFD) simulations on a geometric modeling of a BSLD wing, the Prandtl-D glider. The results were validated by modified equations published by Prandtl, by CFD modeling published by others, and by Trefftz plane analysis. For verification, the results were compared to formation flight research literature on aircraft and birds, as well as published research on non-formation BSLD flight. The significance of this research is two part. One is that the BSLD method has the potential for significant efficiency in formation flight. The optimal position for a trailing wing was determined to be partially overlapping the leading wing vortex core. For a BSLD wing these vortices are located inboard from the wingtips resulting in wingtip overlap and have a wider impact downstream than the elliptical lift distribution (ELD) wingtip vortices. A second aspect is that avian research has traditionally been studied assuming the ELD model for bird flight, whereas this study proposes that bird flight would be better informed using the BSLD.
5

Estudo de uma configuração de asa voadora usando o software de CFD OpenFOAM / Study of a flying wing configuration using the CFD software OpenFOAM

Marques, Gabriel 29 May 2019 (has links)
Este trabalho apresenta uma breve revisão histórica sobre asas voadoras, aeronaves sem uma cauda ou empenagem convencional. São apresentadas algumas características aerodinâmicas importantes para esse tipo de projeto e quais são os conceitos fundamentais que devem ser abordados pelo projetista. Na sequência é apresentado o software OpenFOAM, usado para simular o escoamento e obter forças e momentos aerodinâmicos, que são então comparados com dados experimentais de túnel de vento. / This work presents a brief historical review on flying wings, tailless aircraft without a conventional empennage. Some important aerodynamic characteristics are presented for this type of project and which are the fundamental concepts that must be approached by the designer. Following is the OpenFOAM software introduced, used to simulate the flow and obtain the aerodynamic forces and moments, which are then compared with experimental wind tunnel data.

Page generated in 0.1225 seconds