• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Catalytic light alkanes selective conversion through ammonia-assisted reforming

Fadaeerayeni, Siavash 10 December 2021 (has links) (PDF)
The fact that hydrogen is a clean and versatile fuel offers an attractive carbon-free source of energy and leverages the U.S. economy toward long-term sustainable economic growth. At an industrial scale, hydrogen production is mostly relying on methane steam reforming producing stoichiometric amounts of carbon oxides (CO and CO2), which imposes economic and environmental concerns. To mitigate the issue, we propose NH3 assisted anaerobic reforming of natural gas liquids (ethane and propane) as an alternative approach to produce COx free hydrogen. Here, in the first chapter, through comprehensive performance evaluation, characterization, and transient kinetic studies, it is shown that the atomically dispersed Re-oxo grafted into framework Al of the HZSM-5 zeolite are highly active and stable for the ammonia reforming of ethane and propane at temperatures comparable to steam reforming ≤ 650 °C. In the second chapter, an alternative non- noble Ni/Ga intermetallic compound (IMC) with various Ni to Ga ratios is synthesized through the solvothermal synthesis by forming the oxalate MOF precursor. The result indicates that while Ni-rich samples form pure Ni3Ga IMC with promising catalytic performance, the Ga rich catalyst consists of segregated phases of Ni/Ga IMC and Ga2O3 with ill-defined structure showing lower stability despite the high activity. In chapter 3, a bifunctional Ni/Ga supported ZSM-5 is successfully developed in ethane aromatization. Influence of metal function in early-stage and steady-state activity and stability as well as structure reactivity relation was investigated applying comprehensive characterization, performance test, deactivation modeling, and transient studies. The results suggest that a tandem reaction mechanism between Ni3Ga intermetallic compound, Ga cation, and Bronsted acid sites of zeolite is responsible for the superior performance of bimetallic catalysts compared to their monometallic counterpart. In the last chapter, applying transient kinetic technique, the mechanism of ethane aromatization over Pt and Zn supported ZSM-5 model catalysts was precisely explored. The results reveal that despite mechanistic differences between these catalysts, ethane amortization on both catalysts follows a hydrocarbon pool mechanism.
2

First Principles Analysis of Catalytic Conversion of Light Alkanes to Value-added Fuels and Chemicals

Yinan Xu (12877394) 04 October 2022 (has links)
<p>      </p> <p>Full exploitation of shale resources requires new catalytic techniques to efficiently convert the methane, ethane, and propane found in shale gas to value-added fuels and chemicals. A promising process of converting ethane and propane involves catalytic light alkane dehydrogenation and the subsequent oligomerization of light alkenes. The first part of this work focuses on the examination of the mechanistic details of propane dehydrogenation on Pt-based alloy catalysts, where first principles-based free energy, microkinetic, and degrees of rate control analyses are performed to understand and rationalize the selective propane dehydrogenation using a Pt3Mn alloy. We show that only the under-coordinated, Mn-decorated Pt sites, represented by a Pt3Mn(211) surface, are selective to propylene formation, which can be attributed to several key mechanistic details: (1) facile propylene desorption and (2) hindered pathways that are inherently non-selective to propylene and lead to the formation of isomers. These kinetic details can, in turn, be interpreted using the free energy landscapes of propane dehydrogenation on the Pt3Mn(211) surface, which features a reasonably stronger binding of propylene than those of its isomers. From this study, we extract two selectivity descriptors for propane dehydrogenation: The energetics of propylene desorption versus deep-dehydrogenation, as well as the energetics of the formation of propylene versus its isomers. The properties can be used for designing further improved light alkane dehydrogenation catalysts.</p>
3

Processes for Light Alkane Cracking to Olefins

Peter Oladipupo (8669685) 12 October 2021 (has links)
<p>The present work is focused on the synthesis of small-scale (modular processes) to produce olefins from light alkane resources in shale gas.</p> <p>Olefins, which are widely used to produce important chemicals and everyday consumer products, can be produced from light alkanes - ethane, propane, butanes etc. Shale gas is comprised of light alkanes in significant proportion; and is available in abundance. Meanwhile, shale gas wells are small sized in nature and are distributed over many different areas or regions. In this regard, using shale gas as raw material for olefin production would require expensive transportation infrastructure to move the gas from the wells or local gas gathering stations to large central processing facilities. This is because existing technologies for natural gas conversions are particularly suited for large-scale processing. One possible way to take advantage of the abundance of shale resource for olefins production is to place small-sized or modular processing plants at the well sites or local gas gathering stations.</p> <p>In this work, new process concepts are synthesized and studied towards developing simple technologies for on-site and modular processing of light alkane resources in shale gas for olefin production. Replacing steam with methane as diluent in conventional thermal cracking processes is proposed to eliminate front-end separation of methane from the shale gas processing scheme. Results from modeling studies showed that this is a promising approach. To eliminate the huge firebox volume associated with thermal cracking furnaces and allow for a compact cracking reactor system, the use of electricity to supply heat to the cracking reactor is considered. Synthesis efforts led to the development of two electrically powered reactor configurations that have improved energy efficiency and reduced carbon footprints over and compare to conventional thermal cracking furnace configurations.</p> <p>The ideas and results in the present work are radical in nature and could lead to a transformation in the utilization of light alkanes, natural gas and shale resources for the commercial production of fuels and chemicals.</p>

Page generated in 0.0384 seconds