31 |
Robust organic light emitting device with advanced functional materials and novel device structuresLin, Meifang 01 January 2008 (has links)
No description available.
|
32 |
Electroluminescent and photoluminescent properties of metal-based compoundsLundin, Natasha J, n/a January 2007 (has links)
Organic light emitting diodes (OLEDs) are an emerging display technology with the advantages of being efficient, bright, portable and flexible. In this work, a number of novel compounds have been developed for incorporation into OLEDs as emitting dopants. A series of ligands containing dipyrido[3,2-a:2�,3�-c]phenazine substituted at the 11-position with ethyl ester, bromo-, nitrile and 5-phenyl-1,3,4-oxadiazole moieties have been synthesised. Each of the ligands were coordinated to Re(I), Cu(I), Ru(II) and Ir(III) metal centres. Ligands and complexes were characterised by �H NMR and IR spectroscopy, mass spectrometry and microanalysis. Single crystal X-ray analyses were performed on fac-chlorotricarbonyl(dipyrido[3,2-a:2�,3�-c]phenazine-11-carboxylic ethyl ester)rhenium (triclinic, P-1, a = 6.403(5) Å, b = 10.388(5) Å, c = 16.976(5) Å, α = 84.087(5)�, β = 84.161(5)�, γ = 79.369(5)�, Z = 2, R1 = 0.0536, wR2 = 0.0978), fac-chlorotricarbonyl(11-bromodipyrido[3,2-a:2�,3�-c]phenazine)rhenium.CH₃OH (monoclinic, C2/c, a = 19.506(5) Å, b = 18.043(5) Å, c = 13.320(5) Å, α = γ = 90�, β = 114.936(5)�, Z = 4, R1 = 0.0345, wR2 = 0.0827), fac-chlorotricarbonyl(11-cyanodipyrido[3,2-a:2�,3�-c]phenazine)rhenium (triclinic, P-1, a = 6.509(5) Å, b = 12.403(5) Å, c = 13.907(5) Å, α = 96.88(5)�, β = 92.41(5)�, γ = 92.13(5)�, Z = 2, R1 = 0.0329, wR2 = 0.0701), bis-2,2�-bipyridyl(2-(11-dipyrido[3,2-a:2�,3�-c]phenazine)-5-phenyl-1,3,4-oxadiazole)ruthenium triflate.2CH₃CN (triclinic, P-1, a = 10.601(5) Å, b = 12.420(5) Å, c = 20.066(5) Å, α = 92.846(5)�, β = 96.493(5)�, γ = 103.720(5)�, Z = 2, R1 = 0.0650, wR2 = 0.1458) and bis-(2-phenylpyridine-C�,N�)(dipyrido[3,2-a:2�,3�-c]phenazine)iridium(III) hexafluorophosphate.(CH₃)₂CO (triclinic, P-1, a = 13.505(5) Å, b = 16.193(5) Å, c = 19.788(5) Å, α = 92.857(5)�, β = 98.710(5)�, γ = 93.432(5)�, Z = 2, R1 = 0.0494, wR2 = 0.1097).
The ground and excited state properties of the ligands and complexes were investigated by a range of techniques, including electrochemistry, absorption and emission spectroscopy, spectroelectrochemistry and excited state lifetime studies. Complexes of dppz-based ligands typically show MOs which are segregated over either the bpy or phz region of the dppz backbone. The properties of the Ru(II) and Ir(III) complexes of the ligand series investigated in this work were consistent with this model, and the LUMOs of these complexes were assigned as the b₁(phz) phz-localised MO. The Re(I) and Cu(I) complexes of the ligand series appeared to show MOs which were delocalised over the entire dppz ligand.
A modular complex containing an electron transport group, hole transport group and emitting centre was synthesised. The complex fac-tricarbonyl(trans-(E)-1-((2,2�:5�,2��-terthiophen)-3�-yl)-2-(4�-pyridyl)-ethane)(2-(11-dipyrido[3,2-a:2�,3�-c]phenazine)-5-phenyl-1,3,4-oxadiazole)rhenium(I) hexafluorophosphate was oxidised and reduced readily, encouraging efficient transport of both holes and electrons. However, this resulted in the complex having a small band gap and hence a low quantum yield of emission. Emission from this complex appeared to be from more than one state.
The complexes containing the dppz-based ligand series show complicated excited state behaviour. Emission behaviour is consistent with input from more than one state for many of the Re(I), Cu(I) and Ir(III) complexes. The Ru(II) complexes of the ligand series emit from a �MLCT state between metal-based and bpy-based MOs located on the dppz ligands, as is usual for complexes of this type. All complexes containing 11-cyanodipyrido[3,2-a:2�,3�-c]phenazine showed extremely short excited state lifetimes consistent with extremely efficient non-radiative deactivation of the excited state.
Ligands and complexes were incorporated into OLEDs with the structure [ITO/PEDOT:PSS/PVK:BuPBD:dopant/BCP/Alq₃/LiF/Al] to test their ability to behave as emissive dyes. Many of the compounds behaved poorly as dopants due to their low emission quantum yields, and poor alignment of HOMO and LUMO energy levels with those of the other compounds within the device. �MLCT-based emission was achieved through energy transfer from the PVK host for the devices containing chlorotricarbonylrhenium(I) complexes of the ligand series. The OLEDs containing Ru(II) and Ir(III) complexes also emitted from dopant-centred �MLCT states. In these devices, dopant excitation appeared to occur through direct charge trapping from the adjacent hole transport and electron transport layers. Read more
|
33 |
Current Transport Mechanisms in Organic Light-Emitting DiodeOu, Yi-fang 01 July 2005 (has links)
Organic light-emitting diode has several advantages using in
the flat penal display, but it is still needed to improve the disadvantages. The charge-carriers of the organic layers are one of the dominant factors to influence the performance of OLED.
Hence, it is worth to study and understand the charge
transporting behaviors by the theoretical simulation in the
organic layers of OLED, and that is helpful for the OLED in
future.
In this study, three kinds of models are used to simulate the
characteristics of several different organic light-emitting devices,
and it also try to compare the relationship between the current
density and voltage. Three kinds of models are described as (1)
The field-dependent carrier mobility model (FDM model), (2) An
exponential distribution of traps model (EDT model), and (3) The
field dependent trap occupancy model (FDTO model). For the
simulation of three models, the characteristics of several
hole-only devices and electron-only devices were analyzed to
investigate and discuss the organic layer of the devices with different materials. In addition, by varying the parameters such as the thickness and temperature, a comparison was made between the results simulated from models with the values obtained from experimental works. Finally, based on above results, the characteristics of OLED could be improved for future applications. Read more
|
34 |
A Simple Package Technique of Light Emitting Diode for Enhancing Illuminant QualityLin, Yu-Chung 20 June 2008 (has links)
The purpose of this thesis is to fabricate an LED module with low half intensity angle(HIA) ,and to use this module to form a line source with optical performance comparable to that of a CCFL .In addition ,heat dissipation of the LED module on different sub-mounts is also investigated .
The LED modules were formed by first etching a through si via on silicon substrate using wet etching technology for light confining .Then a thin layer of metal was deposited on to the via to reflect the lights emitted from the LED .The LED die was attached to the Si sub-mount with electrodes ,and the connections between the LED and the Si sub-mount were completed by wire bonding .Finally ,the LED modules were obtained by positioning the Si substrates onto the Si sub-mounts using UV epoxy .
The optical performance of the LED module was simulated by Lighttools .For the si substrate with a thickness of 400 £gm ,a simulated HIA of 36 o was obtained .Using six-LED package ,a 3-cm line source with 84.8% output uniformity was simulated .On the other hand ,the measured HIA of a LED module ,and the uniformity of 3-cm line source are 38 o and 84.8% ,respectively.
The thermal resistance of the si sub-mounts were also investigated .The different structures of the sub-mount were proposed ,namely ,LED to Copper case ,LED to Si sub-mount to Copper case ,and LED to Si sub-mount with Copper filled via to Copper case .The estimated thermal resistance of the sub-mounts are 13 W/mk¡B19.4 W/mk and 34.7 W/mk .We believe that the large thermal resistance of the Si sub-mount with Copper filled via is primarily caused by 800 £gm thick substrate . Read more
|
35 |
Synthesis of luminophoric disubstituted polyacetylenes and fabrications of efficient, stable, blue light-emitting diodes /Xie, Zhiliang. January 2003 (has links)
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2003. / Includes bibliographical references (leaves 255-278). Also available in electronic version. Access restricted to campus users.
|
36 |
Fabrication and characteristics of the InGaN/GaN multiple quantum well blue LEDs /Liang, Hu. January 2003 (has links)
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2003. / Includes bibliographical references (leaves 62-66). Also available in electronic version. Access restricted to campus users.
|
37 |
Study on materials for organic light-emitting diodes /Chen, Haiying. January 2003 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2003. / Includes bibliographical references. Also available in electronic version. Access restricted to campus users.
|
38 |
Organic light emitting diodes (OLEDs) for lighting /Yu, Xiaoming. January 2009 (has links)
Includes bibliographical references.
|
39 |
Development of laser processes for nitride light-emitting diodes and its applicationsMak, Yick-hong, Giuseppe., 麥易康. January 2010 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
|
40 |
Tailoring optical properties of light-emitting diodes by nanostructuring with nanospheresZhang, Qian, 张倩 January 2012 (has links)
III-V nitride based light-emitting diodes (LEDs) have experienced rapid developments during past decade, proving their potential to substitute conventional incandescent bulbs and fluorescent lamps to fulfil energy-efficient and sustainable lighting needs. Tremendous endeavours have been made to improve the performance of LEDs, most of which focused on enhancing the internal and external quantum efficiencies. However, other optical properties of LEDs remain to be explored for a more flexible way of using LEDs in various applications. Therefore, this thesis proposes two nanostructuring strategies through the use of nanospheres to tailor the optical properties of LEDs. The nanostructured LEDs are demonstrated enable light emission with reduced divergence, or becomes polarized. The monolithic modifications are free of external optics and thus eliminate light loss, meanwhile providing manipulability of optical emission from LEDs.
Firstly, close-packed indium-tin-oxide (ITO) micron-lenses with dimension of the order of wavelength have been integrated onto InGaN LEDs aiming at reducing the emission divergence. The sub-micron lens arrays are patterned by nanosphere lithography with silica nanosphere serving as an etch mask on ITO layer, leaving the semiconductor layer damage-free. An enhancement of up to 63.5% on optical output power from the lensed LED has been observed. The LED with 500 nm lenses exhibits a 26.8° reduction in emission divergence (full width at half maximum) compared with the bare LED. Three-dimensional finite-difference time-domain simulations performed for light extraction and emission characteristics is found to be consistent with the observed results.
Secondly, polarization behavior of light emitted from InGaN LEDs propagating through a self-assembled polystyrene nanosphere opal film has been studied. Angular-resolved optical transmission of transverse electric (TE) and transverse magnetic (TM) polarized light has been measured. An integrated p/s ratio of 2.16 is observed at a detection angle of 70°, attributed to the suppression of TE mode at particular frequencies by the three-dimensional photonic crystal. Polarization is found to depend strongly on both the photonic bandgap of the opal and the angle of incidence. Theoretical calculations by transfer matrix method yield results consistent with the experimental data. / published_or_final_version / Electrical and Electronic Engineering / Master / Master of Philosophy Read more
|
Page generated in 0.0651 seconds