191 |
Pulp pretreatments for improved selectivity and extended oxygen delignification /Dang, Zheng, January 2002 (has links)
Thesis (M.S.) in Chemical Engineering--University of Maine, 2002. / Includes vita. Includes bibliographical references (leaves 80-83).
|
192 |
Effect of kraft pulping on oxygen delignification /Zou, Haixuan, January 2002 (has links)
Thesis (Ph. D.) in Chemical Engineering--University of Maine, 2002. / Includes vita. Includes bibliographical references (leaves 166-171).
|
193 |
The klason lignin determination as applied to aspenwood with special reference to acid-soluble ligninBusche, Louis Roy. January 1960 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1960. / Includes bibliographical references (p. 96-100).
|
194 |
A study on ozone modification of lignin in alkali-fiberized woodLyse, Thomas E. January 1979 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1979. / Bibliography: leaves 142-146.
|
195 |
The peroxyacetic acid oxidation of lignin-related model compoundsLawrence, William J., January 1978 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1978. / Bibliography: leaves 111-113.
|
196 |
Transition metal ion catalyzed oxidation of a residual lignin-related compound by alkaline hydrogen peroxideSmith, Philip K. January 1984 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1984. / Bibliography: leaves 98-103.
|
197 |
Genetic and molecular analysis of xylem development in Arabidopsis thalianaCano Delgado, Ana Isabel January 2000 (has links)
Plant cell walls play a central role in cell growth and morphogenesis. All plant cells have a primary wall. The formation of a secondary cell wall is restricted to particular cell types, such as the xylem cells, highly lignified cells that provide support and transport functions to the plant. The mechanisms regulating secondary cell wall biogenesis remain largely unknown. To identify genes involved in such mechanisms, a genetic screen for mutants with altered xylem development in the primary root of Arabidopsis thaliana has been conducted. Three different classes of mutants were identified. They are characterised by increased number of xylem strands (m"), altered timing of protoxylem differentiation (tpx) and ectopic lignification (eh). Initial characterisation of the mutant phenotypes, establishment of different complementation groups and their map position in the Arabidopsis genome has been determined. Mutations in the EL [I locus have been characterised in further detail. The eli l mutants exhibited ectopic lignification of cells throughout the plant that never normally lignify. Xylem cells in elil were misshapen and failed to differentiate into continuous strands, causing a disorganised xylem. elil mutants also exhibited altered cell expansion resulting in a stunted phenotype. Abnormal distribution of cellulose and lignin was observed in elil cell walls. Ultrastructural analysis of elil cell walls using an anti-lignin antibody has revealed that that the ectopic deposition of lignin-like compounds occurs within an altered secondary wall. Furthermore, other previously described cell expansion mutants, such as lit, rswl (at the conditional temperature) and det3, exhibited lignification patterns reminiscent to that of elil mutants. Analysis of the genetic interactions of elil with the lit mutant revealed that ELlI and LIT genes act in independent pathways to control cell expansion. These results, together with the double mutant analysis of eli l with other cell expansion mutants suggested a link between cell growth and differentiation of secondary thickened walls. Map-based cloning placed the ELJ1 gene in a 140-Kb interval on the top arm of Arabidopsis chromosome V. A candidate gene approach was used that identified a gene encoding a cellulose synthase catalytic subunit (CesA), AthCesA-3 as a candidate. Sequence analysis revealed that the AthCesA-3 gene is mutated in two elil alleles sequenced, both mutations leading to amino acid substitutions. Initial complementation experiments of elil plants with the wild type AthCesA-3 gene appeared to restore the wild type phenotype, suggesting that mutations in the AthCesA-3 gene gave rise to the elil phenotypes. These studies represent an important contribution to our understanding of the molecular mechanism of cellulose deposition during cell expansion and secondary cell wall deposition during plant morphogenesis.
|
198 |
THE MECHANISMS OF CHROMOPHORE FORMATION OF LIGNIN MODEL COMPOUNDSClare, Sheldon Irvin, 1938- January 1972 (has links)
No description available.
|
199 |
Biological bleaching of kraft pulps by monokaryotic, dikaryotic, and mutant strains of Trametes versicolorAddleman, Katherine January 1994 (has links)
In a limited screen of monokaryons and dikaryons of various strains of Trametes versicolor, the monokaryons generally bleached hardwood and softwood kraft pulps more extensively than dikaryons, although there was great variation among both groups. A monokaryotic strain (52J) derived from a Paprican dikaryon (52P) by regenerating mycelium-derived protoplasts had better pulp bleaching ability than its dikaryotic parent. Unusually low extracellular laccase and manganese peroxidase activity levels were associated with reduced pulp bleaching. Mutants of strain 52J were isolated with various manganese peroxidase and laccase activities. Those with markedly reduced laccase and manganese peroxidase activity had impaired abilities to bleach, delignify, and produce methanol from hardwood kraft pulp, mineralize $ sp{14}$C-labelled synthetic lignins, reduce the colour of kraft mill bleach plant effluent, or had lost these abilities altogether. Dechlorination of kraft bleach plant effluent organochlorines was only slightly less in the mutants tried than in 52J. When purified manganese peroxidase was added back to mutant M49 of 52J, significant pulp bleaching was restored. Effluent decolorization also improved with added manganese peroxidase.
|
200 |
The role of reductive enzymes in Trametes versicolor-mediated kraft pulp biobleachingRoy, Brian Paul Patrick January 1994 (has links)
The extracellular culture supernatants of the white rot fungus Trametes versicolor can bleach and delignify unbleached kraft pulps, however the process is too slow for commercial application. Though at least two oxidative enzymes, laccase and manganese peroxidase (MnP) produced by this organism can catalyze a partial delignification of kraft pulp, the effect observed is small relative to that obtained with the complete fungal system. To develop a synthetic (cell-free) delignification system, other protentially important components of the culture supernatant were identified and their contributions to biobleaching and delignification were evaluated. The presence of pulp did not significantly affect the overall carbon balance of the fungus, but a number of non-volatile metabolites (oxalic, fumaric, glyoxylic and phenyllactic acids) induced by the presence of pulp were identified. In T. versicolor 52J, the secretion of manganese peroxidase (MnP), and cellobiose:quinone oxidoreductase (CBQase) enzymes were inducible by pulp whereas cellulase and laccase were not. Several low molecular weight metabolites secreted by T. versicolor functioned as effective Mn(III) complexing agents at their physiological concentrations and promoted MnP activity. / Two distinct CBQase proteins are secreted by T. versicolor 52J, CBQase 4.2 a a 113kDa homodimer containing both heme and flavin cofactors and CBQase 6.4, a 48 kDa monomer with a flavin cofactor only. Superficially, these enzymes appear very similar to the cellobiose oxidase (CBO) and CBQase reported in Phanerochaete chrysosporium. CBQase 4.2 was shown to reduce insoluble manganese dioxide to its soluble Mn(II) and Mn(III) forms with the concommitant oxidation of cellobiose. The sugar acids formed by CBQase could function as effective complexing agents for Mn(III),and complement the Mn(II) to Mn(III) oxidation activity of MnP. / It is proposed that a redox cycling of lignin molecules by certain fungal oxidative and reductive enzymes occurs during delignification and that this cycling ultimately promotes net lignin degradation. A redox cycle wa established between T. versicolor CBQase and laccase which allowed the O$ sb2$ comsumption rate of laccase to remain at a constant level and the total O$ sb2$ consumption by the enzyme was much treater than if the substrate were incubated with laccase alone. A new assay for CBQase based on the ability of this enzyme to reduce the radical intermediates formed during laccase-mediated chlorpromazine oxidation was developed. A redox cycle for these two enzymes was established using both model substrates like CPZ, and with a kraft lignin preparation. CBQase inhibited the formation of polymeric material by laccase; however no evidence was found indicating that cycling with these two enzymes favors depolymerization of kraft lignin. However, the alkali extractability of residual lignin in kraft pulp was increased by a sequential treatment with MnP followed by CBQase.
|
Page generated in 0.0445 seconds