301 |
Identificação, anotação e análise filogenética das famílias gênicas envolvidas na via de biossíntese de lignina em cana-de-açúcar (Saccharum spp.) / Identification, annotation and phylogenetic analysis of gene families involved in lignin biosynthesis pathway in sugarcane (Saccharum spp.)Guilherme Rodrigues Ferraz 25 April 2016 (has links)
A parede celular vegetal é composta primariamente de celulose, hemicelulose e lignina. A lignina é o segundo biopolímero mais abundante na biosfera, atrás apenas de celulose, e é formado principalmente a partir da ligação entre três monômeros chamados monolignóis. A formação desses monolignóis é catalisada por pelo menos 10 enzimas membros das famílias gênicas AMP_binding (gene 4CL), p450 (C3H, C4H e F5H), ADH_N (CAD), Epimerase (CCR), Methyltransf_3 (CCoAOMT), Methyltransf_2 (COMT), Transferase (HCT) e Lyase_aromatic (PAL), que compõem a via de biossíntese dos monolignóis. Até o momento, cerca de 25 sequencias da via de biossíntese de lignina já foram identificados em cana-de-açúcar (Saccharum spp). Ainda, o sequenciamento do genoma desta espécie se mostra uma difícil tarefa devido ao tamanho do genoma e ploidia nuclear. Em virtude da disponibilidade de transcriptomas oriundos de diferentes órgãos de cana-de-açúcar e a importância na identificação correta das sequencias ortólogas, o presente trabalho visa à identificação, anotação e análise filogenética dos genes das famílias gênicas envolvidas na biossíntese de lignina em cana-de-açúcar. Para isso, genes destas famílias gênicas da planta modelo de eudicotiledôneas Arabidopsis thaliana e gramíneas tais como Oryza sativa (arroz), Brachypodium distachyon, Zea mays (milho) e Sorghum bicolor (sorgo) foram identificados, anotados e filogeneticamente categorizados. Em seguida, as sequências de cana-de-açúcar foram identificadas em cinco transcriptomas distintos, anotados e avaliados quanto à identidade e cobertura em relação às proteínas de sorgo. As análises filogenômicas entre cana-de-açúcar e as demais espécies estudadas revelaram 23 sequências candidatas envolvidos na biossíntese de lignina em cana-de-açúcar. / Plant cell wall is composed of cellulose, hemicellulose, and lignin. Lignin is the second most abundant biopolymer on biosphere, after only cellulose, and is formed primarily from three monomers, called monolignols. Monolignol biosyntesis is catalysed by at least 10 enzymes members of AMP_binding (4CL enzyme), p450 (C3H, C4H e F5H), ADH_N (CAD), Epimerase (CCR), Methyltransf_3 (CCoAOMT), Methyltransf_2 (COMT), Transferase (HCT) e Lyase_aromatic (PAL) gene families involved in the biosynthetic pathway of monolignols. So far, there is 25 sugarcane (Saccharum spp.) genes identified involved in the lignin biosynthesis. Sequencing sugarcane\'s genome is still a difficult task due to large genome and ploidy level. Due to the availability of transcriptome data from distinct organs of sugarcane and the importance in the accuracy on the identification of the orthologous sequences, this work aim the identification, annotation and phylogenetic analysis of proteins members of distinct gene family involved in monolignol biosynthesis in sugarcane. To conduct it, we identified and annotated all genes from the model plant eudicots Arabidopsis thaliana and grasses such as Oryza sativa (rice), Brachypodium distachyon, Zea mays (mayze) and Sorghum bicolor (sorghum) and analysed the phylogenic relationship among them. The sugarcane sequences were retrieved and annotated from five distinct transcriptome data and analysed by the identity and coverage against the best sorghum orthologous genes. The phylogenomics analysis revealed a total of 23 sugarcane sequences putatively involved in the biosynthesis of lignin.
|
302 |
\"Utilização de fluidos no estado sub/supercritico na polpação de Eucalyptus grandis e Pinus taeda\" / Utilization of sub/supercritical fluids in Eucalyptus grandis e Pinus taedaPimenta, Maria Teresa Borges 19 December 2005 (has links)
A utilização de dióxido de carbono em condições sub e supercríticas (em associação com co-solventes) em processos de deslignificação/polpação já se encontra descrito na literatura especializada. Esta técnica se beneficia da elevada difusibilidade apresentada por fluidos no estado sub/supercrítico. Quando aplicada em processos de polpação, a utilização destes fluidos nestas condições pode proporcionar vantagens nas etapas de impregnação e de processamento dos efluentes gerados no processo. Visando aplicar o potencial da elevada difusibilidade apresentada pelo dióxido de carbono supercrítico, realizou-se o estudo comparativo do desempenho dos processos kraft, organossolve convencional e supercrítico frente à deslignificação de diferentes espécies (Eucalyptus grandis e Pinus taeda), empregando-se amostras de diferentes dimensões. O processo kraft se mostrou mais eficiente com o emprego de cavacos, enquanto que a utilização de dióxido de carbono supercrítico, com o uso de co-solvente etanol/água (processo SFE), foi mais eficiente com amostras de maiores dimensões (cubos de 3,5 x 3,5 x 4,0cm). Dentro dos intervalos considerados para as variáveis utilizadas nos diferentes processos de polpação, as polpas obtidas pelo processo SFE a partir de amostras de seção quadrada 3,5 x 3,5cm apresentaram maior conteúdo de holocelulose e maior alvura, evidenciando um elevado rendimento livre de lignina. Estudou-se também o uso de acetona/água e de dioxano/água como co-solventes em processos realizados com dióxido de carbono no estado supercrítico. Os resultados obtidos foram comparados com estudos anteriores realizados com álcoois alifáticos e indicaram a maior efetividade do uso de dioxano/água e 1-propanol/água. Foram realizados também estudos empregando amônia como fluido supercrítico no tratamento de cavacos de Pinus taeda, com o intuito de verificar a capacidade nucleofílica da amônia frente às reações de deslignificação. As reações foram realizadas com o uso exclusivo de amônia e na presença de etanol, água e misturas etanol/água como cosolventes. A análise dos resultados obtidos evidenciou a ocorrência pouco significativa de remoção de lignina, com migração desta para a periferia dos cavacos. As ligninas obtidas nos diferentes estudos foram caracterizadas por diferentes técnicas analíticas e não apresentaram diferenças significativas entre as amostras obtidas nos diferentes processos estudados. / The utilization of carbon dioxide under sub/supercritical conditions (in association with co-solvents) in delignification/pulping reactions has already been reported in the literature. This technique takes advantage of the high diffusivity presented by fluids at the supercritical state. When applied to pulping processes the utilization of these fluids can lead to advantages mainly in the impregnation and effluent treatment steps. In an attempt to apply the high diffusivity exhibited by supercritical carbon dioxide, this work presents the results obtained in the comparative study of the performance of the kraft, organosolv and supercritical processes in the delignification of different species (Eucalyptus grandis and Pinus taeda), employing samples with different dimensions. The kraft process presented a higher efficiency in the treatment of wood chips while the supercritical carbon dioxide, with ethanol/water as co-solvent, (SFE process) was more efficient in the treatment of high dimension samples (3.5 x 3.5 x 4.0 cm). In the experimental conditions applied in this study, the pulps obtained in the SFE treatment of samples with square section 3.5 x 3.5 cm showed higher holocellulose content and higher brightness which corresponds to high free of lignin pulp yield. It was also studied the utilization of acetone/water and dioxane/water as co-solvents in the carbon dioxide supercritical pulping process. The results were compared with previous studies performed with aliphatic alcohols and indicated a higher efficiency of the dioxane/water and 1-propanol/water mixtures. The utilization of supercritical ammonia in the treatment of Pinus taeda wood chips was also studied in order to verify the nucleophilic capability of this fluid in the delignification reactions. The reactions were performed with ammonia, exclusively, and in the presence of different co-solvents (ethanol, water and ethanol/water mixtures). The results of the delignifications showed the occurrence of low amount of lignin removal, with migration of lignin to the periphery of the wood chips. The lignins isolated from the reactions performed in this work were characterized by different analytical techniques. The results indicated no significant differences among the samples obtained in the different delignification processes.
|
303 |
FRACTIONATION OF LIGNIN DERIVED COMPOUNDS FROM THERMOCHEMICALLY PROCESSED LIGNIN TOWARDS ANTIMICROBIAL PROPERTIESDodge, Luke A. 01 January 2018 (has links)
The overuse of antibiotics in agriculture is an emerging concern, due to their potential detrimental impact to the environment. This study focuses on exploring antimicrobial properties of lignin derived compounds. Lignin is of interest as a feedstock to replacing some petroleum-based chemicals and products because it is the most abundant source of renewable aromatic compounds on the planet. Two lignin rich streams, residues from the enzymatic hydrolysis of dilute acid and alkaline pretreated corn stover, were decomposed via pyrolysis and hydrogenolysis, respectively. The resulting liquid oils were subjected to sequential extractions using a series of solvents with different polarities. Chemical compositions of the extracted fractions were characterized through HPLC and GC/MS. These extracted compounds were screened against Saccharomyces cerevisiae (S. cerevisiae), Escherichia coli, and Lactobacillus amylovorus for antimicrobial properties. Six lignin model monomers: guaiacol, vanillin, vanillic acid, syringaldehyde, 2,6-dimethoxyphenol, and syringic acid were compared to the oils and extracted fractions for antimicrobial properties. Development of lignin-derived chemicals with antimicrobial properties could provide a novel use for this underutilized natural resource.
|
304 |
Chemical Characterisation of Compression Wood in Plantation Grown Pinus RadiataNanayakkara, Bernadette January 2007 (has links)
The primary objective of this study was to find out if changes in chemistry could be used to quantify Pinus radiata compression wood severity or degree of compression wood development. Basic chemical composition and the lignin structure was assessed for a range of different compression wood samples sourced from juvenile wood, mature wood, earlywood, latewood, branches, knots, 2-year and 1-year old Pinus radiata. Fluorescence microscopy was used as the reference method to assess the degree of compression wood development. Lignin structure of compression wood was studied by thioacidolysis, size exclusion chromatography, and thioacidolysis/31P NMR spectroscopy. Variation in the basic chemical composition and lignin structure with compression wood severity was ascertained. Results showed that, as the severity of compression wood changed, progressively from normal through mild to severe, all chemical parameters commonly associated with compression wood changed concurrently. With increasing severity lignin and galactose levels increased while glucose and mannose levels decreased. Lignin structural changes were also associated with changing severity of compression wood. Levels of p-hydroxyphenyl (H) releasable β-ethers increased and guaiacyl (G) releasable β-ethers decreased. Similarly, levels of uncondensed p-hydroxyphenyl units increased, while uncondensed guaiacyl units decreased. Similar proportions of condensed guaiacyl units were present in compression wood and normal wood. Similar trends in chemical composition were observed between the compression wood and related opposite wood in branches, knots and young wood of Pinus radiata. A number of chemical parameters changed linearly with compression wood severity. They were: the amount of lignin and galactose, the galactose/glucose ratio and p-hydroxyphenyl content in lignin. Parameters based on the p-hydroxyphenyl unit content in lignin, the H/G releasable β-ether ratio, releasable p-hydroxyphenyl β-ether units and uncondensed p-hydroxyphenyl C9 units are most suitable indicators of compression wood severity as they spanned a larger range relative to the normal wood levels and were not influenced by the morphological origin of wood samples. Chemical methods for quantifying compression wood severity should focus on the detection and measurement of these parameters. Galactan present in Pinus radiata compression wood was isolated and characterised. Structural investigation by methylation analysis and NMR spectroscopy revealed that this galactan was largely composed of (1→4)-linked β-D-galactopyranose residues. No evidence was found to indicate the presence of any branches. Characterisation of lignin in cell wall fractions of Pinus radiata normal wood revealed that middle lamella lignin has a higher lignin content, a lower amount of releasable β-ethers and a more condensed lignin than the secondary wall lignin. Levels of releasable p-hydroxyphenyl units were not higher in middle lamella lignin. A new method based on thioacidolysis and 31P quantitative NMR spectroscopy for estimation of the degree of lignin condensation of the phenolic and etherified C9 units in in situ wood lignin is described. Using this method it was found that phenolic C9 units in in situ lignin were considerably less condensed than etherified C9 units in both compression wood and normal wood.
|
305 |
Pulp-mill effluent color removal using Sagenomella striatisporaBoussaid, Abdellatif 04 August 1995 (has links)
Graduation date: 1996
|
306 |
Using Sediment Records to Determine Sources, Distribution, Bioavailability, and Potential Toxicity of Dioxins in the Houston Ship Channel: A Multi-proxy ApproachSeward, Shaya M. 2010 May 1900 (has links)
Urban centers are major sources of contaminants to the surrounding air, water and soils. Above all, combustion-derived carbonaceous aerosols, especially black carbon (BC) and associated polycyclic aromatic hydrocarbons (PAHs), make significant contributions to the pollution in these systems. Here sedimentary records are used to produce a series of historical reconstructions of such contaminants to the Houston Ship Channel (HSC) system and compare these to point source inputs of hydrophobic organic contaminants (HOC). Analytical data on total organic carbon (TOC), BC, PAHs, dioxins and lignin (likely discarded from a pulp and paper mill along the Channel) were determined. This multi-proxy approach revealed that over the last several decades, HOC inputs to the system have been derived from a complex mixture of combustion processes, industrial point-sources, and oil spills. In particular, widespread dioxin contamination was observed throughout the study region with a particular site of the HSC showing total concentrations over 20,000 pg/g and 5000 pg toxic equivalent (TEQ)/g dry weight of sediment. Using two models based on sorption constants of total OC and BC, porewater concentrations were estimated to be lower than expected, at 20 pg/L and 5 pg TEQ/L. These values, however, are recognized as being extremely high for freely dissolved concentrations in porous media. The pulp and paper waste pit has recently been declared a Superfund site based on dioxin concentrations alone. The relationship between lignin biomarkers and dioxins observed in these sediments confirms that discharges of pulp and paper effluents were responsible for such high dioxin levels. Concentrations of BC, amorphous OC, and TOC were then used to calculate sediment binding of dioxins in sediments of the HSC. Our study found BC to be extremely low in HSC sediments (0.04 to 0.20%) indicating minimal dioxin sorption capacity. This suggests strong potential for fluxes of dioxins from sediments to the water column both through passive diffusion and physical mixing during natural and anthropogenic sediment remobilization events in this shallow system (hurricanes, storms, and dredging). The purposeful addition of BC to these sediments might be promising as a remediation strategy.
|
307 |
A Study of Fibre-matrix Interactions in Biodegradable Kraft Pulp Fibre-reinforced Polylactic Acid CompositesFazl, Mandana 22 November 2012 (has links)
As the plastics sector moves towards sustainable growth and development, natural fibres start to play an important role as constituents in composite materials in several industries including automotives. However, drawbacks such as fibre-matrix incompatibility and poor fibre dispersion still exist. In this thesis, Kraft pulp fibre (KF)-Polylactic Acid (PLA) composites were prepared using thermal compounding and aqueous blending to study fibre-matrix interactions. Fibre surfaces were also modified to improve fibre dispersion and water absorption properties. A biorefinery lignin was added to PLA and high density polyethylene (HDPE) as a biofiller and potential interface modifier. Aqueous blended composites showed better mechanical and dynamic mechanical performance than the thermally compounded materials. The fibre surface modification improved dispersion and material properties at higher fibre content. Furthermore, the addition of lignin to polymers resulted in improved mechanical properties in both PLA and HDPE; however, lignin failed to improve interface bonding between KF and PLA.
|
308 |
A Study of Fibre-matrix Interactions in Biodegradable Kraft Pulp Fibre-reinforced Polylactic Acid CompositesFazl, Mandana 22 November 2012 (has links)
As the plastics sector moves towards sustainable growth and development, natural fibres start to play an important role as constituents in composite materials in several industries including automotives. However, drawbacks such as fibre-matrix incompatibility and poor fibre dispersion still exist. In this thesis, Kraft pulp fibre (KF)-Polylactic Acid (PLA) composites were prepared using thermal compounding and aqueous blending to study fibre-matrix interactions. Fibre surfaces were also modified to improve fibre dispersion and water absorption properties. A biorefinery lignin was added to PLA and high density polyethylene (HDPE) as a biofiller and potential interface modifier. Aqueous blended composites showed better mechanical and dynamic mechanical performance than the thermally compounded materials. The fibre surface modification improved dispersion and material properties at higher fibre content. Furthermore, the addition of lignin to polymers resulted in improved mechanical properties in both PLA and HDPE; however, lignin failed to improve interface bonding between KF and PLA.
|
309 |
The methanol-extractable aromatic materials in newly formed aspenwoodMugg, Jarrell Bert 01 January 1958 (has links)
No description available.
|
310 |
Oxygen delignification process chemistry for AcaciaWidiatmoko 10 November 2006 (has links)
A series of laboratory oxygen delignification were performed in this study at constant oxygen pressure and consistency to study the response of the pulp to the different process parameters, i.e. reaction temperature, reaction time, soda addition, and mechanical pretreatment, to the zero span tensile strength loss. The basic chemistry of the oxygen delignified pulps was under study including fiber charge, celluloses/hemicelluloses, and hexenuronic acid. The fiber structure such as curl, kink, fines, and fiber length were also discussed. NaOH charge can be reduced as much as 50 % by applying mechanical pretreatment to obtain the same level of selectivity at the oxygen delignification conditions described in this study.Mechanical pretreatment prior to oxygen delignification promoted a better selectivity for both Acacia mangium and MHW pulps. MHW kraft pulp did not show a significant extractive removal in all pretreatment methods during oxygen delignification. The ultrasonic pretreatment followed by filtering induced the best extractive removal among the other three methods.
|
Page generated in 0.0509 seconds