• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 57
  • 57
  • 14
  • 12
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Role of molecular chaperones in G protein B5-Regulator of G protein signaling dimer assembly and G protein By dimer specificity

Howlett, Alyson Cerny 02 April 2009 (has links) (PDF)
In order for G protein signaling to occur, the G protein heterotrimer must be assembled from its nascent polypeptides. The most difficult step in this process is the formation of the Gβγ dimer from the free subunits since both are unstable in the absence of the other. Recent studies have shown that phosducin-like protein (PhLP1) works as a co-chaperone with the cytosolic chaperonin complex (CCT) to fold Gβ and mediate its interaction with Gγ. However, these studies did not address questions concerning the scope of PhLP1 and CCT-mediated Gβγ assembly, which are important questions given that there are four Gβs that form various dimers with 12 Gγs and a 5th Gβ that dimerizes with the four regulator of G protein signaling (RGS) proteins of the R7 family. The data presented in Chapter 2 shows that PhLP1 plays a vital role in the assembly of Gγ2 with all four Gβ1-4 subunits and in the assembly of Gβ2 with all twelve Gγ subunits, without affecting the specificity of the Gβγ interactions. The results of Chapter 3 show that Gβ5-RGS7 assembly is dependent on CCT and PhLP1, but the apparent mechanism is different from that of Gβγ. PhLP1 seems to stabilize the interaction of Gβ5 with CCT until Gβ5 is folded, after which it is released to allow Gβ5 to interact with RGS7. These findings point to a general role for PhLP1 in the assembly of all Gβγ combinations, and suggest a CCT-dependent mechanism for Gβ5-RGS7 assembly that utilizes the co-chaperone activity of PhLP1 in a unique way. Chapter 4 discusses PhLP2, a recently discovered essential protein, and member of the Pdc family that does not play a role in G protein signaling. Several studies have indicated that PhLP2 acts as a co-chaperone with CCT in the folding of actin, tubulin, and several cell cycle and pro-apoptotic proteins. In a proteomics screen for PhLP2A interacting partners, α-tubulin, 14-3-3, elongation factor 1α, and ribosomal protein L3 were found. Further proteomics studies indicated that PhLP2A is a phosphoprotein that is phosphorylated by CK2 at threonines 47 and 52.
12

Les Patatines de Pseudomonas Aeruginosa : secrétées ou non secrétées ? Telle est la question ... / Patatins of Pseudomonas Aeruginosa : secreted or not secreted ? That is the question ...

Salacha, Richard 11 June 2010 (has links)
Pseudomonas aeruginosa est une bactérie à Gram négatif ubiquitaire, pathogène opportuniste. Elle est la 3ème cause d’infections nosocomiales, notamment chez les immunodéprimés et les grands brûlés. Elle est aussi responsable de la mort de nombreux patients atteints de la mucoviscidose. Sa virulence est largement due à son aptitude à sécréter de nombreuses enzymes dégradatives et toxines, parmi lesquelles la protéine ExoU, sécrétée par le Système de Sécrétion de Type III. ExoU est une phospholipase, de la famille des « patatin-like proteins », dont l’activité est portée par une dyade catalytique Ser-Asp.Mon travail de thèse a permis d’identifier 4 homologues d’ExoU (PlpA, PlpB, PlpC et PlpD) dans le protéome de la souche PAO1 de P. aeruginosa (qui est dépourvu de cette protéine). En étudiant le mode de sécrétion de PlpD, nous avons découvert une nouvelle branche du Système de Sécrétion de Type V (SST5), le SST5d. La protéine représentant ce nouveau système possède un domaine C-terminal transporteur de type TpsB (SST5b), fusionné à un domaine N-terminal patatine sécrété dans le milieu extracellulaire (à l’image d’un autotransporteur, ou SST5a). Ce mode de sécrétion serait un mode dédié à la sécrétion de « patatin-like proteins », comme le suggèrent nos analyses phylogénétiques, à Nous avons en outre démontré que PlpD possède une activité lipase.L’autre protéine étudiée, PlpA, est également sécrétée, bien que nous n’ayons pu établir avec certitude sa voie de transport. Nous avons évalué le rôle de cette protéine lors de l’interaction de P. aeruginosa avec des cellules hôtes de type macrophages et cellules épithéliales. Nous avons observé que cette protéine confère une protection temporaire aux cellules infectées par P. aeruginosa. Ce retard semble être directement imputable à l’activité de la protéine, puisqu’il est dépendant de l’intégrité de la dyade catalytique putative de PlpA / Pseudomonas aeruginosa is an ubiquitous Gram negative bacteria, and efficient opportunistic pathogen. It is the third most common cause of nosocomial infections, most particularly within immunocompromized or burn patients. This pathogen is responsible for the death of numerous cystic fibrosis patients. Its virulence is due mainly to its capacity to secrete numerous degradative enzymes and toxins, among them, ExoU which is secreted via the Type III Secretion System. ExoU is a phospholipase of the patatin-like protein family, and its activity is based on a Ser-Asp catalytic dyad.During my thesis, we identify 4 ExoU homologs (PlpA, PlpB, PlpC, and PlpD) in the proteome of the P. aeruginosa PAO1 strain (this strain does not possess ExoU). Results obtained studying PlpD secretion led us to discover a new branch of the Type V Secretion System (T5SS), the T5dSS. PlpD is composed of a C-terminal TpsB-like transporter domain (like T5bSS), fused to a N-terminal patatin domain which is secreted into the extracellular medium (like autotransporters, or T5aSS). Our phylogenetic analysis suggests that this secretion pathway may be dedicated to the secretion of PLPs, like T5cSS, which secretes only adhesins. Moreover, we demonstrated that PlpD is a lipase.The other studied protein, PlpA, is also a secreted protein, but we still do not know which secretion system is involved in its secretion. We tested the role of PlpA during interaction of P. aeruginosa with host cells by carrying out infections of murin macrophages and epithelial cells. We observed a transitory protection of cells infected with P. aeruginosa. This protection seems to require an active PlpA protein as it is dependent on a intact catalytic dyad in this protein
13

Regulation of the Cyanobacterial Bidirectional Hydrogenase

Oliveira, Paulo January 2008 (has links)
Today, mankind faces a new challenge in energetic terms: a new Industrial Revolution is imperative, already called by some as an Energetic Revolution. This corresponds to a conversion to clean, environmentally friendly and renewable energy sources. In this context, hydrogen arises as a valid alternative, since its combustion produces a considerable amount of energy and releases solely water as a by-product. In the present thesis, two model cyanobacteria, namely Synechocystis sp. strain PCC 6803 and Anabaena/Nostoc sp. strain PCC 7120, were used to examine the hydrogen metabolism. The efforts were focused on to understand the transcription regulation of the hox genes, encoding the structural elements of the bidirectional hydrogenase enzyme. Here, it is shown that such regulation is operated in a very distinct and intricate way, with different factors contributing to its delicate tuning. While in Synechocystis sp. strain PCC 6803 the hox genes were shown to be transcribed as a single operon, in Anabaena/Nostoc sp. strain PCC 7120 they were shown to be transcribed as two independent operons (possibly three). Two transcription factors, LexA and AbrB-like protein, were identified and further characterized in relation to the hydrogen metabolism. Furthermore, different environmental conditions were demonstrated to operate changes on the transcription of the bidirectional hydrogenase genes. In addition, functional studies of three open reading frames found within the hox operon of Synechocystis sp. strain PCC 6803 suggest that this may be a stress responsive operon. However, based on the gained knowledge, it is still not possible to connect the signal transduction pathways, from the environmental signal, through the response regulator, to the final regulation of the hox genes. Nevertheless, the crucial importance of studying the transcription regulation of the different players involved in the hydrogen metabolism is now established and a new era seems to be rising.
14

Studies on the inhibitory activity of Bungarus multicinctus PILPs on matrix metalloproteinase-2 (MMP-2)

Chou, Wen-min 01 July 2009 (has links)
Three protease inhibitor-like proteins (PILPs) identified from Bungarus multicinctus genome are structurally homologous with Kunitz-type proteinase inhibitor. The goal of the present study is to explore whether PILPs exhibit an inhibitory action on matrix metalloproteinase 2 (MMP-2) activity. Unlike PILP-1 and PILP-2, PILP-3 was found to inhibit MMP-2 activity as evidenced by specific substrate assay. Moreover, in vitro migration and invasion assays, and wound-healing assay showed that PILP-3 suppressed the migration and invasion of human neuroblastoma SK-N-SH cells. Pull-down assay and dot blotting-binding assay proved an interaction between PILP-3 and MMP-2. Nevertheless, PILP-3 did not affect either expression or secretion of MMP-2 in SK-N-SH cells. In terms of highly structural similarity between PILP-2 and PILP-3, two chimeric mutants in which amino acids at N-terminus and C-terminus of PILP-3 were substituted by those of PILP-2 were prepared. In contrast to N-terminus chimera, C-terminus mutant of PILP-3 was unable to inhibit MMP-2 activity and showed a reduction in binding with MMP-2. Taken together, our data suggest that PILP-3 may be a useful template for rational designing pharmaceutical agent in inhibiting MMP-2 activity.
15

Cloning and characterization of ethephon-inducible genes from sweet potato leaves

Wu, Hsin-tai 25 January 2010 (has links)
According to our previous results, ethephon-induced sweet potato leaf senescence and senescence-associated gene SPCP1 expression was affected by reduced glutathione, EGTA, and cycloheximide (Chen et al., 2009). These data suggest that calcium influx, reactive oxygen species (ROS) and de novo synthesized proteins can affect ethephon-mediated effects. Therefore, PCR-selective substractive hybridization and RACE-PCR methods were used to clone 5 full-length cDNAs encoded putative calmodulin (SPCAM), catalase (SPCATA), anionic peroxidase (SPPA), ACC oxidase (SPACO), and DSS1-like protein (SPDSS1) from mixed samples of ethephon-treated leaves for 6 and 24 hours. The ORF of SPCAM contains 450 nucleotides and encodes 149 amino acids. There are 4 putative EF-motifs in the deduced protein structure. SPCAM exhibited amino acid sequence identity with isolated Arabidopsis calmodulins from 48% to 100%, and was completely the same as CaM7 calmodulin. The ORF of SPCATA contains 1479 nucleotides and encodes 492 amino acids. SPCAM exhibited high amino acid sequence identity with other plant catalases from 71.2% to 80.9%, and had the highest identity with mangrove catalase. The ORF of SPPA contains 1068 nucleotides and encodes 355 amino acids. SPPA exhibited amino acid sequence identity with other published sweet potato peroxidase isoforms from 28.7% to 97.5%, and had the highest identity with anionic peroxidase SWPA4. The ORF of SPACO contains 930 nucleotides and encodes 309 amino acids. SPACO exhibited high amino acid sequence identity with other plant ACC oxidases from 62.3% to 81.5%, and had the highest identity with tobacco ACC oxidase. The ORF of SPDSS1 contains 228 nucleotides and encodes 75 amino acids. SPDSS1 exhibited amino acid sequence identity with other DSS1 from 25.2% to 62.3%, and had the highest identity with maize DSS1. The chlorophyll contents and Fv/Fm values were significantly reduced, however, the isolated gene expression was remarkably enhanced in natural senescent leaves. DAB staining showed that H2O2 amount was remarkably elevated at S3 senescent leaves compared to leaves of the other developmental stages. Evan blue staining also demonstrated that S3 senescent leaf had more cell death compared to S0 young leaves. In addition ethephon-induced leaf senescence exhibited similar results. The chlorophyll contents and Fv/Fm values were significantly reduced, however, the isolated gene expression was remarkably enhanced in ethephon-treated leaves compared to dark control. DAB staining showed that H2O2 amount was remarkably elevated at 72 hours in ethephon-treated leaves compared to dark control. Evan blue staining also demonstrated that ethephon-treated leaf for 72 hours had more cell death compared to dark control. Based on these data we conclude that SPCAM, SPCATA, SPPA, SPACO and SPDSS1 gene expression were significantly increased in natural and ethephon-induced senescent leaves. The possible functions of these isolated genes in association with events in ethephon-induced leaf senescence, including calcium influx, ROS elevation or scavenge, and following signaling will be discussed.
16

The expression and function of phosphacan/RPTP[beta] in adaptive synaptogenesis after traumatic brain injury

Harris, Janna L. January 1900 (has links)
Thesis (Ph.D.)--Virginia Commonwealth University, 2008. / Prepared for: Dept. of Anatomy and Neurobiology. Title from title-page of electronic thesis. Bibliography: leaves 181 - 202. Available online via the Internet.
17

Choline Transport Links Phospholipid Metabolism and Inflammation in Macrophages

Snider, Shayne January 2017 (has links)
Choline is necessary for the synthesis of phosphatidylcholine (PC), the predominant phospholipid species and an important lipid intermediate. Macrophages, critical mediators of innate immunity, have been implicated in lipid dysregulation associated with metabolic disease. Despite the importance of choline in lipid metabolism, few studies have investigated the relationship between choline metabolism and inflammation. My research revealed that macrophage polarization increased choline metabolism and the expression of the choline transporter CTL1. In addition, choline deficient macrophages showed altered cytokine secretion, suggesting choline metabolism may play an important role in regulating the immune response. This study also describes the generation of a novel CTL1-/- mouse, which showed decreased choline uptake and incorporation into lipids. As an in vivo model for choline deficiency, CTL1-/- mice represent an important model for the future study of choline metabolism. Altogether, these findings suggest an important relationship exists between choline metabolism and inflammation.
18

Mechanisms of aortic carboxypeptidase-like protein regulation of the fibroblast to myofibroblast transition

Tumelty, Kathleen E. 22 January 2016 (has links)
Idiopathic pulmonary fibrosis is a chronic and fatal disease that causes the stiffening of lung tissue and gradual lung function decline. Currently, there are no effectives therapies for this disease. Fibrotic lungs are characterized by accumulation of smooth muscle α actin- (SMA) expressing myofibroblasts and excessive deposition of a collagen rich extracellular matrix. The differentiation of lung fibroblasts into myofibroblasts is stimulated by numerous growth factors, including transforming growth factor β (TGFβ), and potentiated by a stiff mechanical environment. Our laboratory has identified a secreted matrix protein, aortic carboxypeptidase-like protein (ACLP), which is upregulated in idiopathic pulmonary fibrosis. Additionally, ACLP knockout mice are protected from experimentally induced fibrosis. This led to the hypothesis that ACLP promotes the fibroblast to myofibroblast transition, and the goal of this research was to characterize the mechanism of ACLP action. ACLP expression preceded SMA and collagen type I expression in rapidly differentiating primary mouse lung myofibroblasts. In gain of function studies, recombinant ACLP induced SMA and collagen I expression in both primary differentiating myofibroblasts as well as IMR90 human lung fibroblasts. ACLP knockdown by siRNA slowed myofibroblast differentiation and partially reverted fully differentiated myofibroblasts into fibroblasts. Because of the similarities among ACLP targets and TGFβ targets, it was hypothesized that ACLP stimulates TGFβ signaling. In lung fibroblasts, ACLP induced Smad3 phosphorylation and nuclear translocation, a feature of TGFβ signaling. The effects of ACLP on myofibroblast differentiation were dependent on TGFβ receptor (TβR) kinase activity and ACLP interacted directly with T&betaR II to promote myofibroblast differentiation. A recombinant TβR II Fc chimera was used to inhibit ACLP-induced SMA expression, but this reagent had no effect on ACLP-induced collagen type I expression, which suggests a differential regulation of SMA and collagen by ACLP. Additionally, ACLP modulated changes in differentiation between cells grown on softer versus stiffer matrices. Using recombinant fragments of the ACLP protein, the N-terminal thrombospondin repeat domain was found to be necessary and sufficient to promote myofibroblast differentiation. Taken together, these studies identified a novel mechanism of ACLP action in fibroblasts and may lead to new therapeutic strategies to treat fibrotic disease.
19

CD68 on rat macrophages binds tightly to S100A8 and S100A9 and helps to regulate the cells’ immune functions / S100A8及びS100A9はマクロファージ上のCD68と結合し, 細胞の免疫機能を制御する

Okada, Kouki 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間健康科学) / 甲第20292号 / 人健博第40号 / 新制||人健||4(附属図書館) / 京都大学大学院医学研究科人間健康科学系専攻 / (主査)教授 岡 昌吾, 教授 藤井 康友, 教授 妹尾 浩 / 学位規則第4条第1項該当 / Doctor of Human Health Sciences / Kyoto University / DFAM
20

The Role of LAR-family Receptor Protein Tyrosine Phosphatases RPTP-G and LAR in Ureter Maturation

Bertozzi, Kristen Victoria January 2008 (has links)
Note:

Page generated in 0.0466 seconds