• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards a Bezout-type Theory of Affine Varieties

Mondal, Pinaki 21 April 2010 (has links)
We study projective completions of affine algebraic varieties (defined over an algebraically closed field K) which are given by filtrations, or equivalently, integer valued `degree like functions' on their rings of regular functions. For a polynomial map P := (P_1, ..., P_n): X -> K^n of affine varieties with generically finite fibers, we prove that there are completions of the source such that the intersection of completions of the hypersurfaces {P_j = a_j} for generic (a_1, ..., a_n) in K^n coincides with the respective fiber (in short, the completions `do not add points at infinity' for P). Moreover, we show that there are `finite type' completions with the latter property, i.e. determined by the maximum of a finite number of `semidegrees', by which we mean degree like functions that send products into sums. We characterize the latter type completions as the ones for which ideal I of the `hypersurface at infinity' is radical. Moreover, we establish a one-to-one correspondence between the collection of minimal associated primes of I and the unique minimal collection of semidegrees needed to define the corresponding degree like function. We also prove an `affine Bezout type' theorem for polynomial maps P with finite fibers that admit semidegrees corresponding to completions that do not add points at infinity for P. For a wide class of semidegrees of a `constructive nature' our Bezout-type bound is explicit and sharp.
2

Towards a Bezout-type Theory of Affine Varieties

Mondal, Pinaki 21 April 2010 (has links)
We study projective completions of affine algebraic varieties (defined over an algebraically closed field K) which are given by filtrations, or equivalently, integer valued `degree like functions' on their rings of regular functions. For a polynomial map P := (P_1, ..., P_n): X -> K^n of affine varieties with generically finite fibers, we prove that there are completions of the source such that the intersection of completions of the hypersurfaces {P_j = a_j} for generic (a_1, ..., a_n) in K^n coincides with the respective fiber (in short, the completions `do not add points at infinity' for P). Moreover, we show that there are `finite type' completions with the latter property, i.e. determined by the maximum of a finite number of `semidegrees', by which we mean degree like functions that send products into sums. We characterize the latter type completions as the ones for which ideal I of the `hypersurface at infinity' is radical. Moreover, we establish a one-to-one correspondence between the collection of minimal associated primes of I and the unique minimal collection of semidegrees needed to define the corresponding degree like function. We also prove an `affine Bezout type' theorem for polynomial maps P with finite fibers that admit semidegrees corresponding to completions that do not add points at infinity for P. For a wide class of semidegrees of a `constructive nature' our Bezout-type bound is explicit and sharp.
3

I ”Like” it. Jag ”Gillar” det : En studie av hur användares beteende och upplevelser påverkas av en "like-funktion", vid bildpublicering i sociala medier / I ”Like” it. Jag ”Gillar” det : A study of how user-behavior and experiences are influenced by a"like-function”, in publication of images in social media

Winkelmann, Oscar January 2014 (has links)
The purpose of this paper has been to study how users experiences and behaviors are influenced by a "like" function, when publication of images in social media with the photo app Instagram as the selected base. In this study respondents has been part of a study regarding their experiences and behavior related to "like" function in Instagram. The results of the question form have then been analyzed to find patterns in their behavior and to exemplify/reinforce different type of user-behavior found in related scientific articles. The study has shown that the behavior of Instagram users is affected by the "like" function, when they believes that the function is a status marker that raises the interest for certain users by the number of likes. Through my results, I have been able to amplify and illustrate several theories of Goffman, Buckingham and Gripsrud which are presented in the report.

Page generated in 0.0628 seconds