1 |
Effective Domains and Admissible Domain RepresentationsHamrin, Göran January 2005 (has links)
<p>This thesis consists of four papers in domain theory and a summary. The first two papers deal with the problem of defining effectivity for continuous cpos. The third and fourth paper present the new notion of an admissible domain representation, where a domain representation D of a space X is λ-admissible if, in principle, all other λ-based domain representations E of X can be reduced to X via a continuous function from E to D. </p><p>In Paper I we define a cartesian closed category of effective bifinite domains. We also investigate the method of inducing effectivity onto continuous cpos via projection pairs, resulting in a cartesian closed category of projections of effective bifinite domains. </p><p>In Paper II we introduce the notion of an almost algebraic basis for a continuous cpo, showing that there is a natural cartesian closed category of effective consistently complete continuous cpos with almost algebraic bases. We also generalise the notion of a complete set, used in Paper I to define the bifinite domains, and investigate what closure results that can be obtained. </p><p>In Paper III we consider admissible domain representations of topological spaces. We present a characterisation theorem of exactly when a topological space has a λ-admissible and κ-based domain representation. We also show that there is a natural cartesian closed category of countably based and countably admissible domain representations. </p><p>In Paper IV we consider admissible domain representations of convergence spaces, where a convergence space is a set X together with a convergence relation between nets on X and elements of X. We study in particular the new notion of weak κ-convergence spaces, which roughly means that the convergence relation satisfies a generalisation of the Kuratowski limit space axioms to cardinality κ. We show that the category of weak κ-convergence spaces is cartesian closed. We also show that the category of weak κ-convergence spaces that have a dense, λ-admissible, κ-continuous and α-based consistently complete domain representation is cartesian closed when α ≤ λ ≥ κ. As natural corollaries we obtain corresponding results for the associated category of weak convergence spaces.</p>
|
2 |
Effective Domains and Admissible Domain RepresentationsHamrin, Göran January 2005 (has links)
This thesis consists of four papers in domain theory and a summary. The first two papers deal with the problem of defining effectivity for continuous cpos. The third and fourth paper present the new notion of an admissible domain representation, where a domain representation D of a space X is λ-admissible if, in principle, all other λ-based domain representations E of X can be reduced to X via a continuous function from E to D. In Paper I we define a cartesian closed category of effective bifinite domains. We also investigate the method of inducing effectivity onto continuous cpos via projection pairs, resulting in a cartesian closed category of projections of effective bifinite domains. In Paper II we introduce the notion of an almost algebraic basis for a continuous cpo, showing that there is a natural cartesian closed category of effective consistently complete continuous cpos with almost algebraic bases. We also generalise the notion of a complete set, used in Paper I to define the bifinite domains, and investigate what closure results that can be obtained. In Paper III we consider admissible domain representations of topological spaces. We present a characterisation theorem of exactly when a topological space has a λ-admissible and κ-based domain representation. We also show that there is a natural cartesian closed category of countably based and countably admissible domain representations. In Paper IV we consider admissible domain representations of convergence spaces, where a convergence space is a set X together with a convergence relation between nets on X and elements of X. We study in particular the new notion of weak κ-convergence spaces, which roughly means that the convergence relation satisfies a generalisation of the Kuratowski limit space axioms to cardinality κ. We show that the category of weak κ-convergence spaces is cartesian closed. We also show that the category of weak κ-convergence spaces that have a dense, λ-admissible, κ-continuous and α-based consistently complete domain representation is cartesian closed when α ≤ λ ≥ κ. As natural corollaries we obtain corresponding results for the associated category of weak convergence spaces.
|
Page generated in 0.0483 seconds