• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Kruskal-Katona theorem for cubical complexes

Ellis, Robert B. 07 October 2005 (has links)
The optimal number of faces in cubical complexes which lie in cubes refers to the maximum number of faces that can be constructed from a certain number of faces of lower dimension, or the minimum number of faces necessary to construct a certain number of faces of higher dimension. If <i>m</i> is the number of faces of <i>r</i> in a cubical complex, and if s > r(s < r), then the maximum(minimum) number of faces of dimension s that the complex can have is m<sub>(s/r)</sub> +. (m-m<sub>(r/r)</sub>)<sup>(s/r)</sup>, in terms of upper and lower semipowers. The corresponding formula for simplicial complexes, proved independently by J. B. Kruskal and G. A. Katona, is m<sup>(s/r)</sup>. A proof of the formula for cubical complexes is given in this paper, of which a flawed version appears in a paper by Bernt Lindstrijm. The n-tuples which satisfy the optimaiity conditions for cubical complexes which lie in cubes correspond bijectively with f-vectors of cubical complexes. / Master of Science

Page generated in 0.0479 seconds