• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SUPPORT VECTOR MACHINE FOR HIGH THROUGHPUT RODENT SLEEP BEHAVIOR CLASSIFICATION

Shantilal, 01 January 2008 (has links)
This thesis examines the application of a Support Vector Machine (SVM) classifier to automatically detect sleep and quiet wake (rest) behavior in mice from pressure signals on their cage floor. Previous work employed Neural Networks (NN) and Linear Discriminant Analysis (LDA) to successfully detect sleep and wake behaviors in mice. Although the LDA was successful in distinguishing between the sleep and wake behaviors, it has several limitations, which include the need to select a threshold and difficulty separating additional behaviors with subtle differences, such as sleep and rest. The SVM has advantages in that it offers greater degrees of freedom than the LDA for working with complex data sets. In addition, the SVM has direct methods to limit overfitting for the training sets (unlike the NN method). This thesis develops an SVM classifier to characterize the linearly non separable sleep and rest behaviors using a variety of features extracted from the power spectrum, autocorrelation function, and generalized spectrum (autocorrelation of complex spectrum). A genetic algorithm (GA) optimizes the SVM parameters and determines a combination of 5 best features. Experimental results from over 9 hours of data scored by human observation indicate 75% classification accuracy for SVM compared to 68% accuracy for LDA.
2

Computational Affect Detection for Education and Health

Cooper, David G. 01 September 2011 (has links)
Emotional intelligence has a prominent role in education, health care, and day to day interaction. With the increasing use of computer technology, computers are interacting with more and more individuals. This interaction provides an opportunity to increase knowledge about human emotion for human consumption, well-being, and improved computer adaptation. This thesis explores the efficacy of using up to four different sensors in three domains for computational affect detection. We first consider computer-based education, where a collection of four sensors is used to detect student emotions relevant to learning, such as frustration, confidence, excitement and interest while students use a computer geometry tutor. The best classier of each emotion in terms of accuracy ranges from 78% to 87.5%. We then use voice data collected in a clinical setting to differentiate both gender and culture of the speaker. We produce classifiers with accuracies between 84% and 94% for gender, and between 58% and 70% for American vs. Asian culture, and we find that classifiers for distinguishing between four cultures do not perform better than chance. Finally, we use video and audio in a health care education scenario to detect students' emotions during a clinical simulation evaluation. The video data provides classifiers with accuracies between 63% and 88% for the emotions of confident, anxious, frustrated, excited, and interested. We find the audio data to be too complex to single out the voice source of the student by automatic means. In total, this work is a step forward in the automatic computational detection of affect in realistic settings.

Page generated in 0.053 seconds