• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Processes in the Line Shift and Linewidth of CaF₂ and CsCdBr₃ Doped with Er³⁺

Reynolds, Adrian John January 2012 (has links)
The linewidths and line positions of 4I15/2 to 4I13/2 absorption transitions of trivalent erbium in CsCdBr₃ and CaF₂ were measured as a function of temperature from approximately 10 K to 300 K. By comparing the temperature dependence of these transitions with theoretical models of electron-phonon coupling the primary mechanism involved were determined. For Er3+ doped CaF₂ the Raman scattering processes dominated the line broadening, although the single-phonon direct processes were significant enough to drastically alter the values of the Raman scattering electron-phonon coupling constant. In comparison, the Er³⁺ doped CsCdBr₃ had negligible Raman scattering contributing to the line broadening. This is likely due to the exceedingly low Debye temperature and consequently low number of phonons, reducing the likelihood of two-phonon processes relative to single-phonon processes. The results were then analysed in terms of the bond length with the ligands and compared with other studies showing that as the bond length gets shorter the electron-phonon coupling constant associated with Raman scattering is expected to get smaller. To explain the line shifts in CaF₂:Er³⁺ it is necessary to treat the Debye temperature as a parameter. This indicates that the phonon modes causing the line shifts are different from those causing the line broadening, and in most of the cases are vibronic processes rather than Raman processes. In the case of CsCdBr₃:Er³⁺ there is very little difference between the fits using the fixed Debye temperature and a varied Debye temperature in over half of the cases examined. Given the distribution of phonon modes, it is likely that this small difference arises because combinations of these processes are of similar intensity, meaning that a combination of Raman and optical phonon modes are likely causing the line shift.

Page generated in 0.0904 seconds