• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Throughput Optimization and Transmitter Power Saving (TOTPS) Algorithm and Extended TOTPS (ETOTPS) Algorithm for IEEE 802.11 Links

Mo, Tianmin 30 October 2006 (has links)
The IEEE 802.11 wireless local area network (WLAN) standard supports multiple transmission modes. However, the higher mandatory data rate mode does not necessarily yield higher throughput. This research started from the relationship between the link throughput and the channel's carrier-to-noise (C/N) ratio. Two algorithms are proposed, a throughput optimization and transmitter power saving (TOTPS) algorithm and an extended throughput optimization and transmitter power saving (ETOTPS) algorithm, based on the knowledge of the C/N ratio at the receiver. In particular, we take the approach of adjusting link parameters like transmitter power and transmission mode to achieve the maximum throughput at different C/N values. Since the TOTPS algorithm tends to reduce the transmitter power without degrading the link throughput, transmitter power can be saved. This not only prolongs battery life, which is critical in ad hoc wireless networks, but also reduces the potential interference to neighboring wireless network systems. The ETOTPS algorithm, on the other hand, aims for higher throughput by trading in more transmitter power. This is particularly desired for high-speed data transfer in an emergency situation. Both algorithms are developed to be applied to IEEE 802.11b, IEEE 802.11a and IEEE 802.11g links. / Ph. D.

Page generated in 0.0958 seconds